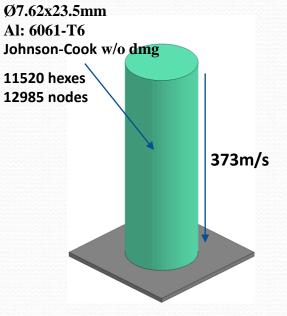


Problem 2: Taylor Impact


Objectives:

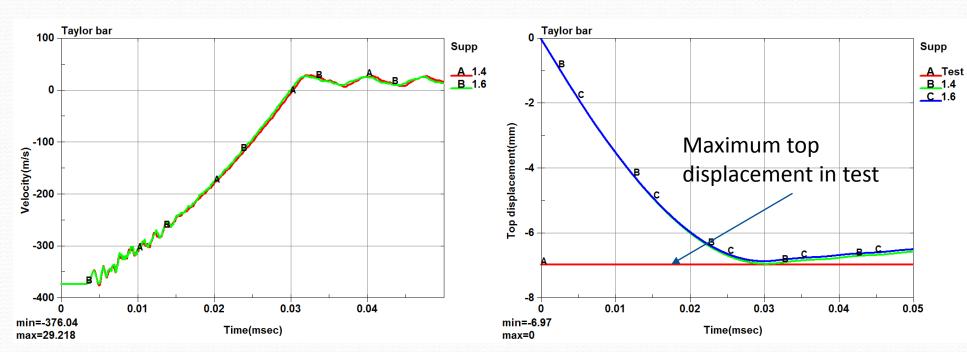
- 1. Understand the difference between Lagrangian and Eulerian kernels
- 2. Evaluate the effect of support size
- 3. Validate against experimental data (max length reduction)

To do list:

You are expected to do the following studies by **Beta**:

- 1. Create a new directory under Example 2 & copy *input_taybar.k*.
- 2. Obtain results by setting DX/DY/DZ=1.4 & KERNEL=0.
- 3. Create another directory and copy *input_taybar.k.*
- 4. Obtain results by setting DX/DY/DZ=1.6 & KERNEL=0.
- 6. Plot z-displacement from the time history file "nodout" and compare with test data (max reduction is 6.97mm), evaluate the accuracy of the SPG formulation.
- 7. Create another directory and copy *input_taybar.k*.
- 8. Obtain results by setting DX/DY/DZ=1.6 & KERNEL=1.
- 9. Understand and explain the results.

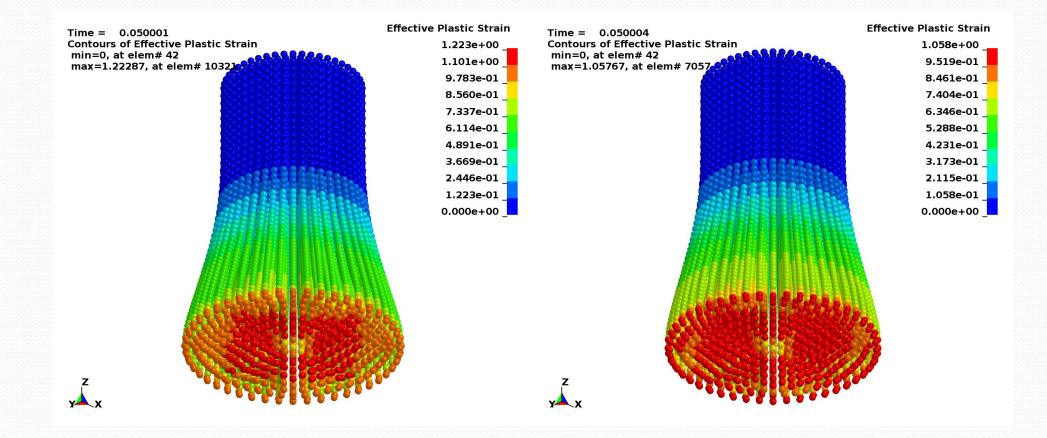
Input file: *input_taybar.k*



Major Keywords for Taylor Impact

Keyword									Remark
*SE(\$# \$# _	CTION_SOL secid 1 DX 1.4 IDAM 1	LID_SPG elform 47 DY 1.4 FS 1.0E+90	aet 0 DZ 1.4 STRETCH 1.10	ISPLINE 0 ITB 1	KERNEL	LSCALE 0.0	SMSTEP 30	SWTIME 0.0	Updated Lagrangian kernel Non-failure analysis DX=DY=DZ=1.4 Response for normalized support size = 1.4
*SE(\$# \$# \$	CTION_SOU secid 1 DX 1.6 IDAM 1	.ID_SPG elform 47 DY 1.6 FS 1.0E+90	aet 0 DZ 1.6 STRETCH 1.10	ISPLINE 0 ITB 1	KERNEL	LSCALE 0.0	SMSTEP 30	SWTIME 0.0	Updated Lagrangian kernel Non-failure analysis DX=DY=DZ=1.6 Response for normalized support size = 1.6
*SE(\$# \$# \$	CTION_SOL secid 1 DX 1.6 IDAM 1	.ID_SPG elform 47 DY 1.6 FS 1.0E+90	aet Ø DZ 1.6 STRETCH 1.10	ISPLINE 0 ITB 1	KERNEL	LSCALE 0.0	SMSTEP 30	SWTIME 0.0	Eulerian kernel Non-failure analysis DX=DY=DZ=1.6 Response for normalized support size = 1.6 Tension instability

Bar Velocity and Top Displacement Histories


Legend: normalized support size

Bar velocity

Top surface displacement

Effective Plastic Strain at Termination

Supp1.6