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Abstract In thiswork, a strain-morphed nonlocalmeshfree
method is developed to overcome the computational chal-
lenges for the simulation of elastic-damage induced strain
localization problem when the spatial domain integration
is performed based on the background cells and Gaussian
quadrature rule. The new method is established by intro-
ducing the decomposed strain fields from a meshfree strain
smoothing to the penalized variational formulation. While
the stabilization strain field circumvents the onerous zero-
energymodes inherent in the direct nodal integration scheme,
the regularization strain field aims to avoid the pathological
localization of deformation in Galerkin meshfree solution
using the weak-discontinuity approach. A strain morphing
algorithm is introduced to couple the locality andnon-locality
of the decomposed strain approximations such that the con-
tinuity condition in the coupled strain field is met under
the Galerkin meshfree framework using the direct nodal
integration scheme. Three numerical benchmarks are exam-
ined to demonstrate the effectiveness and accuracy of the
proposed method for the regularization of elastic-damage
induced strain localization problems.
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1 Introduction

Meshfree or particle methods [7,11,19–21] are attractive
in various industrial applications involving high gradients,
large deformation and moving discontinuities. Three types
of instabilities [5] arise when a solid mechanics problem is
solved by the meshfree nodal integration method. Spurious
energy mode in deformation is the first type of instabilities
which mainly emanates from the rank instability [3] of the
meshfree discrete system. The rank instability is caused by
the under-integration of weak forms inherent in the central
difference formula from the direct nodal integration scheme,
and it requires numerical stabilization. Strain localization
[18] is driven by the material instability which presents
the second type of instability in meshfree nodal integration
method. Physically, it is recognized [15,16] that the onset of
strain localization in the rate-independent material coincides
with the loss of ellipticity of the incremental problem. Math-
ematically, the strain localization leads to the ill-posedness
of the incremental boundary value problem and requires a
localization limiter [17]. Tension instability [13] is the third
meshfree instability from discretization which results from
the interaction of the second derivative of Eulerian kernel
and the tensile stress [5]. Nowadays, the tensile instability
can be entirely cured by an employment of Lagrangian ker-
nels [7,24] in the solid mechanics applications.

So far, several stabilization techniques have been devel-
oped to remove the spurious energy modes in the meshfree
nodal integration solution. The meshfree Galerkin/least-
squares (GLS) stabilization approach [3] presents a recon-
structed weak form where a bilinear term consisting of the
residual of equilibrium equation is employed to stabilize the
solution. The principle drawback of this residual stabilization
approach is the contradictory demands on the stabilization
control parameter placed by accuracy requirement. In 2001,
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Chen et al. [9] developed a Stabilized Conforming Nodal
Integration (SCNI) method in which the “integration con-
straint” concept was proposed for the design of an accurate
meshfree nodal integration algorithm. Based on the integra-
tion constraint, a strain-smoothing schemewas introduced as
a stabilization process for nodal integration. Various applica-
tions [28,38,39] of SCNI method have studied in structural
and solid mechanics problems. The consistency conditions
for arbitrary order exactness in the Galerkin approximation
were introduced by Chen et al. [11,14] to further reduce
the solution errors of PDEs from quadrature inaccuracy.
Recently, Wu et al. [35] developed the Smoothed Particle
Galerkin (SPG) method in which a smoothed displacement
field is introduced to stabilize the meshfree Galerkin nodal
integration solution in large deformation and damage analy-
ses. Most recently, the displacement smoothing technique in
SPG method also has been adopted in the state-based peri-
dynamics [25] and the SCNI method [9] for the material
damage analyses [36]. It was shown [37] that SPGmethod is
closely related to the nonlocal meshfreemethod [8] bymeans
of strain regularization analysis. Their analysis results reveal
the SPGmethod is developed based on a fully nonlocalmodel
in strain approximation. In other words, the local and non-
local strain fields are not decoupled in the SPG method. In
order to restore the locality of SPG strain approximation for
the inhomogeneous deformation in non-failure analyses, Wu
et al. [37] has developed a strain gradient stabilization (SGS)
scheme. In SGS scheme, the first-order strain gradients are
derived based on the decomposed strain field from the dis-
placement smoothing to provide the necessary stabilization
effect in the meshfree nodal integration method. The SGS
scheme excludes the second and higher-order strain gradi-
ents for non-failure analysis leading to a penalty formulation
with the penalty (stabilization) parameter coming naturally
from the first-order strain gradients solely for stabilization.
A unique property of the resultant SGS formulation is it
does not require the background cells for the domain integra-
tion. Other meshfree stabilization approaches [38] are often
based on the fully nonlocal model in strain approximation
and cannot preclude the use of background cells for integra-
tion, therefore, pose certain challenges in both programming
and simulating using the Galerkin meshfree methods.

Similar to the damage-induced mesh sensitivity [2] in
finite element method, the discretization in Galerkin mesh-
free method rules the size of the strain localization zone.
Numerically, the discretization sensitivity in strain local-
ization problem is a consequence of shortcomings of the
underlyingmathematical modeling [23]. To avoid this patho-
logical localization of deformation in Galerkin meshfree
method, several meshfree regularization techniques have
been developed. Based on the concept of nonlocal dam-
age and gradient-enhanced damage modeling techniques
[2,8] have developed a meshfree strain smoothing procedure

to remedy the discretization sensitivity in damage-induced
strain localization problem. The relationship between the
integral-type and gradient-type nonlocal damage models [2]
at the discrete level was established under their meshfree
regularization framework [8]. Subsequently, the meshfree
regularization procedure was applied to the SCNImethod [9]
by Wang and Li [29] in which a nodal-integrated smoothed
strain field was introduced to enhance the accuracy as
well as the efficiency in the regularized Galerkin meshfree
method. Both elastic-damage analysis [29,30] and elasto-
plastic damage analysis [38] have been conducted using
this nodal-integrated regularized Galerkin meshfree method
in explicit dynamics simulation. Nevertheless, an imple-
mentation of those meshfree regularization procedures still
demands the background cells as an instance of the ones
in meshfree stabilization procedures. Similar to the SPG
method [35], those meshfree regularization methods were
developed based on the fully nonlocal damage modeling
technique where the higher-order strain gradients are con-
tained in the strain approximations for the entire domain.

Stabilization and regularization are two important ingre-
dients for an accurate particle simulation of damage-induced
strain localization problems. The difficulties in obtaining
a stable and regularized meshfree solution have prompted
numerous techniques that aim to improve onerous stability
issue in the nodal integration scheme and circumvent the dis-
cretization sensitivity in strain localization problems in the
right place at the right time. The main goal of this paper is to
introduce a strain-morphedmeshfreemethod using the direct
nodal integrated scheme for the analysis of elastic-damage
induced strain localization problems with provided stabiliza-
tion and regularization effects.

Our paper is organized as follows. In the next section, an
overview on the nonlocal damage model is given. In Sect. 3,
a strain-morphed meshfree method for providing the stabi-
lization and regularization effects based on a decomposed
smoothed strain field is derived. The corresponding varia-
tional formulation and discrete equations are given in Sect. 4.
Three numerical examples are presented in Sect. 5 to illus-
trate the robustness and accuracy of the proposed method.
Section 6 concludes with a brief summary.

2 Overview on damage model and existing
non-local strain approaches

The basis for damage model is the introduction of a local
damage variable impacting the stiffness of the material. As
a prototype of a softening continuum, we consider the scalar
isotropic elastic-damagemodel described by the stress–strain
relationship [1]

σ = (1 − d)C : ε (1)
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with damage law defined in total form

d = g (κ) (2)

and Kuhn–Tucker loading-unloading conditions given by

f (ε, κ) ≡ εeq (ε) − κ ≤ 0, κ̇ ≥ 0, f (ε, κ) κ̇ = 0 (3)

where ε is the strain tensor, σ is the Cauchy stress tensor,
d is the damage variable and C is the fourth-order elasticity
tensor. Function g is the damage evolution function which is
a continuous function and designed such that d = 0 for the
internal variable κ below a certain threshold, κ0. A simple
equivalent strain εeq can be defined [2] as:

εeq =
√

1

E
ε : C : ε (4)

where E denotes the Young’s modulus.
The implementation of above elastic-damage model

causes the pathological localization of deformation in finite
element method as well as in Galerkin meshfree method [8].
As a result, the damage concentrates in a band of width
depending on the size of nodal spacing in meshfree dis-
cretization, and the meshfree solution does not converge as
the discretization model is continuously refined.

A number of nonlocal approaches have been proposed
to regularize the soften media and control the localization
phenomenon of the underlying continuum theory. One of the
early approaches is to introduce an integral-type of nonlocal
strain [2] into the local damage model. In this integral-type
damage model, the growth of damage in a material point x is
governed by a nonlocal equivalent strain ε̄eq which is defined
by

ε̄eq (x) =
∫

�

Ψ b (x − ξ) εeq (ξ) d� (5)

where Ψ b (x − ξ) is the non-negative smoothing function of
the distance ‖x − ξ‖ and the subscript b denotes the radius
of support in the strain smoothing function. With this non-
local equivalent strain measure, the corresponding loading
condition in Eq. (3) becomes

f (ε̄, κ) ≡ ε̄eq (ε) − κ ≤ 0 (6)

The numerical advantage of this approach is that the kine-
matic and equilibrium equation remain standard. However in
finite element implementation, the resulting stiffness matri-
ces cannot be assembled by a conventional single element
loop in Gauss points due to the expression of nonlocal strains
in Eq. (5). In Galerkin meshfree method, more implementa-
tion challenges arise when the double integration loop based

on background cells is used for the nonlocal stiffness matri-
ces assembly.

An approach to avoid the double element loop in stiffness
matrices assembly is the use of gradient-type of nonlocal
strain [12]. In Galerkin meshfree method [8], the generation
of strain gradient was controlled by the gradient reproducing
conditions in reproducing kernel (RK) [22] approximation.
This approach leads to a nonlocal strain field defined by [10]

ε̄ (x) = ε (x) +
n∑

i+ j=1

αi j Di jε (x) (7)

where Di j (·) = ∂ i+ j (·)/∂xi1∂x j
2 is the standard differential

operator, and αi j is the corresponding coefficient of the strain
gradient. As a consequence, the nonlocal equivalent strain is
expressed in terms of nonlocal strain and given by

ε̄eq =
√

1

E
ε̄ : C : ε̄ (8)

In [8] the nonlocal strain field ε̄ (x) is also introduced to the
Galerkin approximation of the weak form solution through
an assumed strain method [26]. The attendant meshfree reg-
ularization approach reduces programing complexity since
it avoids the double integration loop in stiffness matrices
assembly. On the other hand, this approach introduces a dif-
ferent type of complexity into the programing. Because Eq.
(7) is evaluated at theGauss points using the background cells
approach [8], another set of discrete points based on the col-
lection ofGauss points is needed for theRKapproximation in
the nonlocal strain computation. Additionally, the rendered
nonlocal strain field is not only imposed on the damage zone
but also the rest of undamaged domain.

3 A strain-morphed nonlocal damage model

Thegeneral formof smoothed strainfield inmeshfreemethod
is defined by [8]

ε̄b (x)=Θε (x)
de f ·=

∫
�

Ψ̃ b (x; x−ξ ) ε (ξ) d�, x ∈ �⊆ R2

(9)

where Θ : L2 (�) → L2 (�) denotes a L2 projection oper-
ator, ξ denotes the position of the infinitesimal volume d�,
ε (ξ) is a local strain at position ξ . Ψ̃ b is the strain smoothing
function, Ψ̃ b (r) > 0 for ‖r‖ < b, Ψ̃ b (r) = 0 for ‖r‖ ≥ b,
and subscriptb denotes the radius of influence domain similar
to that in Eq. (5). It is assumed that strain smoothing function
is continuous in� and satisfies the partition of unity property
for the reproduction of constant strain field. The strain ε (ξ)
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inside the integral of Eq. (9) can be further expressed in terms
of ε (x) and its gradients by the Taylor series expansions:

ε (ξ) = ε (x) + ∇ε (x) · (ξ − x) + 1

2!
∇(2)ε (x) ·(2) (ξ − x)(2) + O

(
‖ξ − x‖3

)
(10)

where ∇(2) denotes the 2nd order gradient operator and ·(2)
denotes the 2nd order inner product. The symbol (ς)(n) des-
ignates the n factor dyadic product (ς) (ς) · · · (ς) for vector
ς . Substituting Eq. (10) into Eq. (9) leads to the following
smoothed strain field approximated in terms of unsmoothed
(local) strain and its gradients

ε̄b (x) =
∫

�

Ψ̃ b (x; x − ξ) ε (x) d�

+
∫

�

Ψ̃ b (x; x − ξ)∇ε (x) (ξ − x) d�

+ 1

2!
∫

�

Ψ̃ b (x; x − ξ)∇(2)ε (x) ·(2)

× (ξ − x)(2) d� + h.o.t

= ε (x)
∫

�

Ψ̃ b (x; x − ξ) d�

+∇ε (x) ·
(∫

�

Ψ̃ b (x; x − ξ) (ξ − x) d�

)

+∇(2)ε (x) ·(2)
(
1

2!
∫

�

Ψ̃ b

× (x; x − ξ) (ξ − x)(2) d�

)
+ h.o.t

= ε (x) + ∇ε (x) · λb (x) + ∇(2)ε

× (x) ·(2) ηb (x) + h.o.t (11)

where

λb (x) =
∫

�

Ψ̃ b (x; x − ξ) (ξ − x) d� (12)

ηb (x) = 1

2!
∫

�

Ψ̃ b (x; x − ξ) (ξ − x)(2) d� (13)

λb (x) and ηb (x) define the smoothed position dependent
coefficients associated with the first-order and second-order
strain gradient, respectively. Similar to the stabilization term
in [37], the first-order strain gradient term ∇ε (x) · λb (x)
contains the second-order displacement gradients that can
be used for the stabilization of meshfree nodal integration
method in this study. Analogously, we have another strain
smoothing for regularization

ε̄c (x) = ε (x) + ∇ε (x) · λc (x)

+∇(2)ε (x) ·(2) ηc (x) + h.o.t (14)

where

λc (x) =
∫

�

Ψ̃ c (x; x − ξ) (ξ − x) d� (15)

ηc (x) = 1

2!
∫

�

Ψ̃ c (x; x − ξ) (ξ − x)(2) d� (16)

In this study, the second-order strain gradient term
∇(2)ε (x) ·(2) ηc (x) contains the third-order displacement
gradients which will be used for the regularization. With the
second-order strain gradient term ∇(2)ε (x) ·(2) ηc (x), the
nonlocal strain field ε̄ (x) in Eq. (7) is now defined by

ε̄ (x) ≡ ε (x) + ∇(2)ε (x) ·(2) ηc (x) (17)

It is worthwhile to mention that Ψ̃ b (x) in Eq. (11) does not
necessary equal to Ψ̃ c (x) in Eq. (14). In essence, the radius
size b of Ψ̃ b (x) can be considered a numerical length para-
meter for stabilization while the radius size c of Ψ̃ c (x) is a
material length parameter which can be related to the scale
of the microstructure [2] in strain localization problem. Both
Eqs. (11) and (14) contain same local strain field ε (x) but dif-
ferent coefficients in strain gradient terms when sizes b 	= c.

In this study we have limited the damage variable to be
bonded by d < 1 in Eq. (1) for the weak-discontinuity
approach such that the fully damage (d = 1) does not occur.
This is because the equivalent problem is defined only when
0 ≤ d < 1. If d = 1 is allowed in the damage model, the
displacement discontinuities will be initiated due to the loss
of ellipticity of the rate equilibrium equations. As a result,
a crack will be formed and a strain singularity will thus be
unavoidable at the crack tip. The inclusion of fully damage
d = 1 in the simulation is not within the context of this paper,
but will be addressed in the near future for the coupled dam-
age and fracture analysis. In other words, the transition of
material degradation from damage (0 < d < 1) to frac-
ture (d = 1) is not considered in this study and the singular
strains/stresses fields near the tip of damage band are not
modeled. Under this condition, we can define a damage zone
to be

�c = {x ∈ � | 0 < d (x) < 1 } ⊂ � (18)

In the damage zone �c, the discrete non-local strain field is
formulated according to the definition of Eq. (17)

ε̄ (x)=ε (x)︸︷︷︸
local

+ ˜̃εc (x)︸ ︷︷ ︸
regulari zation

∀x∈�c (19)

where

˜̃εc (x)=∇(2)ε (x) ·(2)
(
1

2!
∫

�

Ψ̃ c (x; x−ξ ) (ξ−x)(2) d�

)

(20)
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Fig. 1 The meshfree morphing model for local and non-local strain approximations

The term ˜̃εc contains the third-order derivatives of displace-
ments and is introduced to the regularization of the meshfree
nodal integration solution in damage-induced strain localiza-
tion problem. The second-order strain gradient ˜̃εc brings in
the non-locality into the analysis of strain localization prob-
lem, which resembles the standard second-order derivative
of strains in the gradient-type damage model [1]. Anal-
ogously, we can also define the undamaged zone to be
�b = {x ∈ � |d (x) = 0 } such that �̄ = �̄b ∪ �̄c and

d = �̄b ∩ �̄c. Note 
d is a moving interface which travels
with the evolution of monotone non-decreasing damage d.

Ideally, one would like to couple the nonlocal strain ε̄ (x)
with local strain ε (x) as a continuum model for the mesh-
free regularization of solution in strain localization problems.
Obviously a direct coupling method introduces the non-
uniqueness of strain along their bounding interface 
d as

[[ε̄]]
d = ε̄ (x) − ε (x) = ˜̃εc (x) 	= 0 for x ∈ 
d (21)

In other words, an introduction of a direct coupling method
to the Galerkin meshfree method leads to an undefined strain
field near the damage zone.

To resolve this problem, a continuum coupling model is
presented in this study by incorporating a morphing function
π (x) in Eq. (19), such that

ε̄ (x) ≡ ε (x)︸︷︷︸
local

+ π (x) ˜̃εc (x)︸ ︷︷ ︸
regulari zation

∀x ∈ �c (22)

and

ε̄ (x) = ε (x) for x ∈ 
d (23)

Clearly, the morphing function π (x) has to be continuous
in damage zone �c and satisfies π (x) = 0 ∀ x ∈ 
d and

0 ≤ π (x) ≤ 1 ∀ x ∈ �c. Combination of Eqs. (22) and (23)
gives

π (x) ˜̃εc (x) = 0 ∀ x ∈ 
d (24)

There are many possible choices for the determination of
morphing function. One of the simple choices is to make
the morphing function π (x) to be a linear or higher-order
function of damage variable d(x). In this study, themorphing
function is chosen to be

π (x) = d (x) ∀x ∈ �c (25)

With the above morphing function, the result of Eq. (24)
yields the following homogenous jump condition in the cou-
pled strain field

[[ε̄]]
d = ε̄ (x) − ε (x) = 0 for x ∈ 
d (26)

As a result, the coupled strain field is uniquely determined
in the whole meshfree computation domain. The coupling of
local and nonlocal strain models is illustrated in Fig. 1.

4 Variational formulation and discrete equations

To introduce the stabilization and regularization strain fields
into the Galerkin method, we follow closely the work in [37].
A review of strain gradient stabilization (SGS) method [37]
for linear elasticity is given in Appendix. The discrete weak
form for linear elasticity can be extended to cover the nonlin-
ear cases through an updated Lagrangian formulation with
reference to the current configuration in the elastic-damage
analysis:
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δ
 =
∫

�

δ
(
ε
(
û
))T : σd�

+
∫

�

δ
(
∇ε

(
û
) · λb

)T : σ̃d� − lext
(
û
)

(27)

where σ is the local Cauchy stress obtained by direct nodal
integration scheme and σ̃ is the enhanced stress field for sta-
bilization. Note that both stress quantities are defined at the
current configuration �. lext corresponds to the nonlinear
version of external work. The enhanced stress field for sta-
bilization in the nonlinear analysis is obtained by replacing
the elastic tensor C using a material response tensor (elasto-
damage tangent modulus) Cσ [6] as

σ̃ = Cσ :
(
∇ε

(
û
) · λb

)
(28)

Equation (28) indicates that the enhanced stresses are related
to the first-order special derivatives of strains through the
elasto-damage tangentmodulus. The linearization of Eq. (27)
with a neglect of non-linear contribution from the nodal strain
and enhanced strain fields in the elastic-damage material
yields

�δ
 =
∫

�

δ
(
ε
(
û
))T : (Cσ

) : �
(
ε
(
û
))
d�

+
∫

�

δ
(
∇ε

(
û
) · λb

)T : Cσ : �

×
(
∇ε

(
û
) · λb

)
d� − �lext (29)

Considering that the Lagrangian meshfree shape function [7]
and the gradients of displacement and strain approximations
are defined in the un-deformed configuration to avoid any
tensile instability, the variation equation of Eq. (29) is trans-
formed from the current configuration � to the un-deformed
configuration �0 as

�δ
 =
∫

�0
δ
(
F−1ε

)T : (Cσ
) : �

(
F−1ε

)
J 0d�

+
∫

�0
δ
(
F−1

(
∇ε · λb

))T : Cσ : �

×
(
F−1

(
∇ε · λb

))
J 0d� − �lext (30)

Fi j (X) = ∂xi (X)

∂X j
=

NP∑
I=1

∂φa (X)

∂X j
xI i (31)

where F is the deformation gradient, xI i denotes the i-
component of current position at node I , and X = [X,Y]T is
a position vector defined in the un-deformed configuration.
J 0 is the determinant of the deformation gradient.

Using the first-order meshfree convex approximation [33]
for φa (X) and zero-order strain smoothing function for

Ψ̃ b (X) and Ψ̃ c (X) leads to the following regularized incre-
mental discrete equations to be solved in the damage-induced
strain localization analysis:

(
KM + K̃

)v

n+1

(
�Ũ

)v+1

n+1
= Rv

n+1 (32)

where all the functions are computed in the v-th iteration dur-
ing the (n+1)-th time incremental step. Thematerial stiffness
matricesKM using the direct nodal integration (DNI) scheme
is given by

KM
IJ =

∫
�0

BT
I C

σBJ J
0d�

DNI=
NP∑
K=1

BT
I (XK )CσBJ (XK ) J 0 (XK ) V 0

K (33)

where

BI (X) =
⎡
⎣ bI1 (X) 0
bI2 (X) bI1 (X)

0 bI2 (X)

⎤
⎦ (34)

bI1 (X) = φa
I,x (X) and bI2 (X) = φa

I,y (X) (35)

The stabilized stiffness counterpart K̃IJ using the direct nodal
integration scheme can be expressed by

K̃IJ =
∫

�0
B̃
T
I C

σ B̃J J
0d�

DNI=
NP∑
K=1

B̃
T
I (XK )Cσ B̃J (XK ) J 0 (XK ) V 0

K (36)

where the first-order strain-gradient matrix B̃I is given by

B̃I (X) =
⎡
⎣ b̃I1 (X) 0
b̃I2 (X) b̃I1 (X)

0 b̃I2 (X)

⎤
⎦ (37)

The components of the first-order strain-gradient matrix B̃I

are

b̃I1 (X) = βx (X) φa
I,xx (X) + βy (X) φa

I,xy (X) (38)

b̃I2 (X) = βx (X) φa
I,yx (X) + βy (X) φa

I,yy (X) (39)

βx (X) =
NP∑
J=1

Ψ̃ b
J (X) (X J − X) (40)

βy (X) =
NP∑
J=1

Ψ̃ b
I (X) (YJ − Y ) (41)
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Correspondingly, the residual term along with the stabilized
internal force term are expressed in a conventional way by

R = f ext − f int − f̃
stab

(42)

where f ext is standard external force vector. The internal
force vector is computed by the direct nodal integration
scheme as

f intI =
∫

�0
BT
I σJ0d�

DNI=
NP∑
K=1

BT
I (XK ) σ (XK ) J 0V 0

K

(43)

where σ T = (σ 11, σ 12, σ 22) is the Cauchy stress for internal

force calculation. The stabilized force vector f̃
stab

will be
given later in the same section.

Without the incorporation of regularization strain field,
Eq. (30) represents a case of local model where the stress
at a given point is assumed to be uniquely determined by
the strain history at this point. As damage-induced strain
field localizes over narrow zones of a continuum, statisti-
cal homogeneity in a representative material volume is lost.
This local form of quasi-static meshfree formulation in Eq.
(30) will exhibit the pathological localization of deformation
and requires regularization. For that reason, a nonlocal strain
defined in Eq. (22) is used for the computation of nonlocal
equivalent strain to regularize the localized solution.

Using the stress–strain relationship in Eq. (1) for the scalar
isotropic elastic-damage model, the change of the Cauchy
stress at (v + 1)-th iteration is

�σ v+1
n+1 =

(
1 − dv

n+1

(
ε̄v
eq,n+1

))
C : �εv+1

n+1

− (
C : εv

n+1

)
�dv+1

n+1

(
ε̄v+1
eq,n+1

)
(44)

where the change of damage variable �dv+1
n+1 based on the

nonlocal equivalent strain in Eq. (8) is computed by

�dv+1
n+1 = (gκ)vn+1 �

(
ε̄eq

)v+1
n+1 (45)

with

(gk)
v
n+1 =

{
0 if

(
ε̄eq

)v
n+1 < κ0

n(
dg
dκ

)v

n+1
otherwise

(46)

and the incremental nonlocal equivalent strain is computed
by

�
(
ε̄eq

)v+1
n+1 = 1

E
(
ε̄eq

)v
n+1

(
C : ε̄v

n+1

) : �ε̄v+1
n+1

= Ξv
n+1 : �ε̄v+1

n+1 (47)

where

Ξv
n+1 = 1

E
(
ε̄eq

)v
n+1

(
C : ε̄v

n+1

)
(48)

κ0
n in Eq. (46) denotes the converged value of equivalent
strain at n-th incremental step. The nonlocal strain increment
�ε̄v+1

n+1 in Eq. (47) can be obtained according to the definition
of morphed strain in Eq. (22) and computed by

�ε̄v+1
n+1 = (B)vn+1 �Ũ

v+1
n+1 + dv

n+1

( ˜̃B
)v

n+1
�Ũ

v+1
n+1

+�dv+1
n+1

( ˜̃B
)v

n+1
Ũ

v

n+1

=
[
(B)vn+1 + dv

n+1

( ˜̃B
)v

n+1

]
�Ũ

v+1
n+1

+�dv+1
n+1

( ˜̃B
)v

n+1
Ũ

v

n+1 (49)

where

˜̃BI (X) =

⎡
⎢⎢⎣

˜̃bI1 (X) 0
˜̃bI2 (X)

˜̃bI1 (X)

0 ˜̃bI2 (X)

⎤
⎥⎥⎦ (50)

Their components are

˜̃bI1 (X) = αxx (X) φa
I,xxx (X) + 2αxyφ

a
I,xxy (X)

+αyy (X) φa
I,xyy (X) (51)

˜̃bI2 (X) = αxx (X) φa
I,yxx (X)

+ 2αxyφ
a
I,yxy (X) + αyy (X) φa

I,yyy (X) (52)

αxx (X) = 1

2

NP∑
J=1

Ψ̃ c
J (X) (X J − X)2 (53)

αxy (X) = 1

2

NP∑
J=1

Ψ̃ c
J (X) (X J − X) (YJ − Y ) (54)

αyy (X) = 1

2

NP∑
J=1

Ψ̃ c
J (X) (YJ − Y )2 (55)

Substituting Eq. (49) into Eq. (47) yields the incremental
nonlocal equivalent strain to be computed by

�
(
ε̄eq

)v+1
n+1 = 1

E
(
ε̄eq

)v
n+1

× (
C : ε̄v

n+1

) :
{[

(B)vn+1 + dv
n+1

( ˜̃B
)v

n+1

]

×�Ũ
v+1
n+1 + �dv+1

n+1

( ˜̃B
)v

n+1
Ũ

v

n+1

}
(56)
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Fig. 2 Illustration of dual stress points in present meshfree nodal integration scheme for the elastic-damage induced strain localization problem

Subsequently, the substitution of Eqs. (46)–(49) into Eq. (45)
yields

�dv+1
n+1 =

(gk)vn+1 Ξv
n+1 :

[
(B)vn+1+dv

n+1

( ˜̃B
)v

n+1

]
�Ũ

v+1
n+1

1−(gk)vn+1 Ξv
n+1 :

( ˜̃B
)v

n+1
Ũ

v

n+1

(57)

which is used to update the damage variable. Subsequently,
the elasto-damage tangent modulus Cσ is obtained using the
algorithmic relationship in Eq. (44) to yield

dσ

dε

∣∣∣∣
n+1

= Cσ
n+1 = (1 − dn+1)C − (gk)n+1

×
[
C : εn+1

] ⊗ [
(C : ε̄n+1) : ∂εε̄n+1

]
E
(
ε̄eq

)
n+1

(58)

The term ∂ε ε̄n+1 in Eq. (66) can be further approximated by

∂εε̄n+1 = I + (gk)n+1
˜̃εcn+1 + h.o.t ≈ I + (gk)n+1

˜̃εcn+1

(59)

The term (1 − dn+1) C in Eq. (58) represents the secant
tangent modulus. The second term on the RHS of Eq. (58) is
a corrective tangent modulus due to the damage growth, and
this term is always non-symmetric.

Finally, the stabilized force vector is also computed by the
direct nodal integration scheme as

f̃
stab
I =

∫
�0

B̃
T
I σ̃ J 0d�

DNI=
NP∑
K=1

B̃
T
I (XK ) σ̃ (XK ) J 0V 0

K

(60)

where σ̃ T = (σ̃11, σ̃12, σ̃22) is a vector containing the com-
ponent of Cauchy stress associated with the stabilization and

is updated by

σ̃ v+1
n+1= σ̃ v

n + �σ̃ v+1
n+1 = σ̃ v

n + (
Cσ

)v
n+1

(
B̃
)v

n+1
�Ũ

v+1
n+1

(61)

The computation of Eq. (32) involves two stress points at
each meshfree node, one for nodal stress σ with regulariza-
tion effect as needed and the other for the enhanced nodal
stress σ̃ for the necessary stabilization. This dual stress point
integration scheme is illustrated in Fig 2.

5 Numerical examples

In this section, three benchmark examples are analyzed to
study the performance of present method in the elastic-
damage induced strain localization problems. Plain stress
condition is assumed in two-dimensional problems. Unless
otherwise specified, a normalized nodal support size of 1.3
is used for the radius size of meshfree shape functions φa (x)
and strain smoothing function Ψ̃ b (x) for stabilization. In
all test cases, we have used the first-order meshfree convex
approximations [33] for meshfree shape functions φa (x) in
displacement approximation to simplify the boundary condi-
tion enforcement. The Shepard function [33] is considered to
for the strain smoothing function Ψ̃ b (x) and Ψ̃ c (x) in this
study. A standard Newton-Raphson method and automatic
time steps are employed to solve the nonlinear equation (32).

The damage law defined in Eq. (2) is taken to be [8]

g (κ) =
⎧⎨
⎩

κc (κ − κ i )

κ (κc − κ i )
if κ i ≤ κ ≤ κc

0.99 if κ > κc

(62)

where κ i and κc denotes the initial and critical values of inter-
nal variable κ , respectively. When damage variable reaches
0.99, the program will stop the run.
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Fig. 3 The 2D bar model

5.1 2D bar in simple tension test

The first example studies a 2D bar in tension. The geometry
and boundary conditions of the bar are shown in Fig. 3. The
bar has Young’s modulus E = 2.0 × 106 N/mm2, and Pois-
son’s ratio v is assumed to be zero to mimic the uniaxial
deformation as in one-dimensional problem. The follow-
ing damage parameters are used: κ i = 1.0 × 10−4, and

κc = 5.0 × 10−3. In order to initiate strain localization, an
initial imperfection is placed in the central area of the bar
with a reduction of 5 % in the Young’s modulus.

Four levels of refinements in the discretization, namely
20 × 1, 40 × 1, 60 × 1, 80 × 1 elements are used to study
the sensitivity of the discretization in the present method. A
radius size c of Ψ̃ c (x) in Eq. (18) is taken to be 20mm for the
calculation of regularized strain in all spatial discretization.
The force–displacement curves in Fig 4a demonstrate the
discretization-insensitive results using the proposed method.
Figure 4b presents the comparison of regularized strain pro-
files which agree very well with each other. Corresponding,
the damage profiles are shown in Fig. 4cwhich is an analogue
of the regularized strain profiles. Apparently in this degen-
erated 1D bar problem, the damage distribution produced by
the present method is not sensitive to the discretization.

Fig. 4 The convergence study of 2D bar model. a Force–displacement curves, b strain profiles, c damage profiles
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Fig. 5 The regularization effect of 2D bar model with a discretization of 40×1 elements. a Force–displacement curves, b strain profiles, c damage
profiles

The regularization effect of radius size c is also studied
using the discretization with 40× 1 elements. Three radii of
c, 10 mm (4 h), 15 mm (6 h) and 20 mm (8 h), are considered
where h denotes the element size in the discretization. Fig-
ure 5a presents the comparison of force–displacement curves
due to different regularization effects. Obviously the larger
size of radius used in the strain regularization, the larger band-
width of strain and damage profiles are as shown in Fig. 5b,
c, respectively.

5.2 Single edge-notch problem

This example deals with a single edge-notch in two-
dimensional problem. The problem statement including the
boundary condition and geometrical information is shown
in Fig. 6. The material constants are set to: Young’s mod-

Fig. 6 The single edge-notch model
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Fig. 7 The convergence of force–displacement curves. a FEM. b Present method

Fig. 8 Comparison of damage contour in FEM. a 10 × 10 elements, b 20 × 20 elements, c 30 × 30 elements

Fig. 9 Comparison of damage contour in present method. a 10 × 10 elements, b 20 × 20 elements, c 30 × 30 elements

ulus E = 2.0 × 106 N/mm2, Poisson’s ratio v = 0.2,
κ i = 1.0×10−4, and κc = 5.0×10−3. The initial imperfec-
tion has a 30% reduction of strength in the Young’s modulus.
The radius size c of Ψ̃ c (x) for regularization is taken to be

10 mm. The result of finite element method using bi-linear
element is considered for comparison.

The convergence of reaction force response in finite
element solution is given in Fig. 7a. As expected, the patho-
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Fig. 10 Damage history in 30 × 30 elements model

Fig. 11 The problem statement of double-hole model

logical mesh-dependence is exhibited in the finite element
solution. The finite element mesh-dependent results can also
be detected in their comparison of damage contour shown in
Fig. 8a–c. On the other hand, the reaction force response as
depicted in Fig. 7b shows the discretization insensitivity of
the present method. This discretization insensitivity can be

further demonstrated in the results of damage distribution.
As shown in Fig. 9a–c, the damage is localized into a zone
with a finite width which does not contract as model is con-
tinuously refined. The progressive damage contours of the
present method are presented in Fig 10. The results in Figs. 8
and 9 indicate that the present method is able to provide
the regularization effect for the analysis of elastic-damage
induced strain localization problem.

5.3 Double-hole problem

The nonlocal effect of the present method is further inves-
tigated in this example by considering the mesh orientation
effect. The plate has two holes and is subjected to a displace-
ment control on the top of the surface as shown in Fig. 11.
Different from the previous two examples, no geometrical
or material imperfections are assumed in this example. The
plate has same Young’s modulus and Poisson’s ratio as in
Example 5.2. The damage parameters used in this example
are: κ i = 1.0 × 10−4, and κc = 1.0 × 10−2. Two types of
discretization which consists of 4-noded and 3-noded finite
elements as displayed in Fig. 12a, b, respectively, are con-

Fig. 12 Two types of discretization in the double-hole problem. a 260 4-noded elements, b 870 3-noded elements
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Fig. 13 The force–displacement curves. a FEM, b present method

Fig. 14 Comparison of damage contour in FEM. a 4-Noded element model, b 3-noded element model elements

Fig. 15 Comparison of damage contour in present method. a 4-Noded element model, b 3-noded element model
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Fig. 16 Damage history. a 4-Noded element model, b 3-noded element model

sidered in the analysis. In addition to the difference in mesh
orientation, the mesh density in Fig. 12a is coarser than that
in Fig. 12b near the double-hole area. In the present method,
the radius size c of Ψ̃ c (x) for regularization is taken to be
15 mm for both discretization models.

Figure 13a compares the reaction force response using
two different meshes in finite element method. Apparently,
strong mesh dependency is observed in the finite element
solution in which the mesh orientation and mesh size play
a role in affecting the post-damage behavior. Figure 14a, b
compare the damage contour at the final deformation for 4-
noded and 3-noded mesh, respectively. Both types of finite
element discretization generate the localized solutions where
the damaged zones form differently in terms of size and pat-
tern.

The comparison of reaction force response using the
present method is shown in Fig. 13b which shows a good
agreement using two different discretization models. Fig-
ures 15a, b present the damage contour displayed in 4-noded
and 3-noded finite element discretization, respectively. As
shown in Figs. 15a, b, the pattern and size of the dam-
aged zone are comparable in both discretization models.
The formation of damage is given in Fig. 16a, b for
4-noded and 3-noded meshes, respectively. The analysis
result in this example indicates a regularized and discretiza-
tion insensitive solution can be achieved by the present
method.

6 Conclusions

Similar to the finite element method, the Galerkin meshfree
method suffers from a loss of material stability known as
the strain localization problem which admits a non-trivial
solution and requires regularization. Existing regularized
meshfree methods utilizing either integral-type or gradient-
type nonlocal damage model encounter intrinsic imple-
mentation difficulties when the spatial domain integration
is based on the background cells and Gaussian quadra-
ture rule. Additionally, numerical difficulty may also arise
when the local and nonlocal strain fields are simultaneously
present in the discretization model. This paper presents a
strain-morphed nonlocal meshfree method that bypasses the
numerical obstacles in the background cells approach while
obtains a regularized solution for the analysis of elastic-
damage induced strain localization problem.

Three numerical benchmarks are studied to examine the
effectiveness of the present approach. The numerical results
in this study suggest that the present approach is able to
deliver a stable and discretization-objective solution in the
analysis of elastic-damage materials. In particular, the size
and the pattern of the damage zone in different discretization
models are in good agreements throughout the simulation.
The application of the method to three-dimensional problem
is straight forward and the inclusion of elasti-c-plastic-
damagematerials is under investigation. The extension of the
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present method to the three-dimensional explicit dynamics
analysis as well as the coupled damage and fracture analysis
will also be considered and presented in the future.
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Appendix

We first recall the strain gradient stabilization (SGS) method
[37] in linear elasticity analysis where the penalty approach
was adopted to introduce the stabilization strain field into
the variational formulation. If we assume the homogenous
Dirichlet problem for simplicity, the discrete SGS penalty
problem [37] in liner elasticity analysis is to find ûp ∈ V h ⊆
H1

0 (�) such that



(
ûp) = inf

û∈V h


(
û
)

(63)



(
û
) = 


(
û
) + 1

2
s
(
û, û

)
(64)

where



(
û
) = ah

(
û, û

) + l
(
û
)

(65)

ah
(
û, û

) =
∫

�

(
ε
(
û
))T : C : (ε (û)) d� (66)

sh
(
û, û

) =
∫

�

(
∇ε

(
û
) · λb

)T : C :
(
∇ε

(
û
) · λb

)
d�

(67)

The term l
(
û
)
in Eq. (65) is the standard external work. The

subspace Vh is defined by

V h (�) =
{
v : v

∣∣∣� ∈ H1 (�) , v = 0 on ∂�
}

(68)

For a particle distribution noted by an index set ZI =
{xI }NPI=1, we approximate the displacement field using the
meshfree approximation to give

uh (x) =
NP∑
I=1

φa
I (x) ũI ≡ û (x) ∀x ∈ � (69)

where NP is the total number of particles in discretization.
φa
I (x), I = 1, . . . N P can be considered as the shape func-

tions of the meshfree approximation for displacement field
uh (x). Note that the radius size a of φa

I (X) is a numerical
length parameter in meshfree displacement approximation
and usually a 	= b (for stabilization) 	= c (for regulariza-
tion). In general, ũI is not the physical particle displacement

and is often referred to as the “generalized displacement”
[7] of particle I in Galerkin meshfree method. As a result,
special essential boundary condition treatment is needed [4].
To simplify the enforcement of essential boundary condition
in this study, a first-order meshfree convex approximation
[27,31,32] is considered. They are constructed by the Gener-
alizedMeshfree Approximation (GMF) method (see [33] for
detail mathematical derivation and [34] for the formulations
in solid mechanics applications). With the meshfree convex
approximation, we can define the H1

0-conforming subspace
for the approximation of displacement field to be

V h := span
{
φa
I

∣∣∣ (supp φa
I

)0 ⊂ �, I ∈ ZI

}
(70)

Since the stabilization coefficient λb has the property,∣∣λb (x)
∣∣ ∝ h, where h denotes the size of nodal spacing in

meshfree discretization, the solution of Eq. (67) is subjected
to a O

(
h2
)
penalty error [37].
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