*SECTION_SOLID_EFG

Card 2

Variable	DX	DY	DZ	ISPLINE	IDILA	IEBT	IDIM	TOLDEF
Type	F	F	F	ı	1	ı	ı	F
Default	1.01	1.01	1.01	0	0	-1	2	0.01

Essential boundary condition treatment

IEBT EQ. 1: Full transformation

EQ.-1: (w/o transformation)

EQ. 2: Mixed transformation

EQ. 3: Coupled FEM/EFG (most efficient)

EQ. 4: Fast transformation

EQ. 7: Maximum Entropy approximation

*SECTION_SOLID_EFG

Card 2

Variable	DX	DY	DZ	ISPLINE	IDILA	IEBT	IDIM	TOLDEF
Type	F	F	F	ı	1	l	I	F
Default	1.01	1.01	1.01	0	0	-1	2	0.01

Spatial domain integration

IDIM EQ. 1: Local boundary condition method

EQ. 2: Gauss integration

EQ.-1: Stabilized EFG method (apply to PENT and HEX background mesh)

One-point integration scheme + gradient type hourglass control

Designed especially for foam and rubber materials

Computational cost is between reduced integration FEM (#1) and full integration FEM (#2)

EQ.-2: Fractured EFG method (apply to TET, SMP only)

