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Abstract 

 
As automotive industry moves rapidly towards electrified and digitalized world, the use of lightweight 

materials and new joining technologies becomes crucial to counteract the weight of electronic and 

autonomous equipment for energy efficiency as well as to maintain safety and performance. Numerical 

modeling the joined structures including their failure behavior has been a big challenge in the modern 

lightweight vehicle safety design. 

In this study, a two-scale method is introduced for modeling jointed structures and their connection 

failure. In the meso-scale, a new particle stabilization method via a velocity smoothing algorithm is 

developed for simulating the large deformation and material failure of joint models. The meso-scale joint 

model characterizing the baseline of joint structure is bridging with macro-scale shell structures using an 

immerse approach. As a result, a topological coupling between solid and shell formulations is achieved 

without the need of matching discretization. This two-scale method facilitates the modeling of most 

connection failures in different joint models and minimizes human interactions with software. A crushing 

tube example is utilized to demonstrate the effectiveness and applicability of the present method in 

modeling the joined structures and failure behavior for the modern lightweight vehicle safety design. 
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1. Introduction  

Lightweight materials are essential for boosting the fuel economy of conventional cars while maintaining 

safety and performance. Light-weighting also applies to electric and autonomous vehicles as the use of 

lightweight materials can offset the weight of batteries, electric motors and autonomous equipment, and at 

the same time maximize the design for lighter, safer and more efficient vehicles. Lightweight materials 

like aluminum, advanced high strength steel (AHSS), magnesium, plastic and carbon fiber composites can 

replace heavy steel in many vehicle parts and have played a critical role in the energy-saving and safety 

design. The use of multi-material for lightweight structures leads to a dramatic increase in the need to join 

dissimilar materials for optimizing the overall car design for both mass and performance.  
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Over the past decades, computer modeling has been shown to speed up the car design process by 

simulating experiments. Nowadays, extensive crashworthiness simulation using commercial finite 

element codes has become a routine during the vehicle’s virtual development process before the body-in-

white structure is ready for production. In the near future, particular attention also has to be paid to the 

new structure design of autonomous vehicles to ensure the safety of occupants in the event of emergency 

braking, crash, electronic failure or even data loss. While thousands of fasteners and joints are used to 

connect the lightweight structures, those joints are often considered the weakest points as regards to 

structural strength. When connection failure occurs, the load is shifted from one part to another depending 

on the types of joints, materials and geometries, which may result in very different deformation results 

affecting the passenger safety during the vehicle crash. For the electric vehicle, battery crash response 

plays additional important part of battery and car structure design. Effective design of protective battery 

pack and its joining technology [Das 2018] has become vital to minimize the risk of thermal runaway 

during the vehicle crash. Therefore, simulating various connecting failure in lightweight vehicles is an 

urgent subject [Seeger 2005; Marur 2008; Haufe 2009; Park 2014] for automotive industry.  

Among many different joint methods, resistance spot welding (RSW) is the earliest and fully 

automated joining technique in automotive assembly process for decades. In principle, a full 3D 

continuum spot weld model [Nielsen 2010] is required in order to capture the complex stress state and the 

sufficient stiffness responses such as bending and torsional moments in predicting the fracture mode. 

However, because the finite element model of the body-in-white structure is mainly made of shell 

elements for efficiency purposes, a coupling of 3D joint elements with shell structures is traditionally 

simplified through a surface type of connection such as the tied-contact [LS-DYNA]. The respective 

material failure criterion in those simplified spot weld models are generally derived from coupon tests 

using optimization methods such as design of experiment (DoE) [Muhammad 2012; Yang 2013]. 

Hundreds or even thousands of coupon tests including tensile, coach-peel, cross-tension and lap-shear are 

usually performed to extract the distinct rupture modes from a wide range of deformations for the 

calibration of material failure model in the tied-contact approach. Unfortunately, this kinematical 

simplification of joint model using the tied-contact approach and experimental calibration procedure fails 

to model the pullout rupture [Morawski 2013] which is a governing failure mode when material tearing 

occurs in the base metal modelled by shell formulations. Although some advanced finite element methods 

such as extended finite element method (XFEM) [Wu et al. 2018] have been proposed to simulate the 

crack propagations in shell structures, their applications in connection failure analysis involving complex 

fracture pattern remain to be accomplished. 

On the other hand, automotive industry is striving toward new jointing techniques such as Flow-Drill 

Screws (FDS), Self-Piercing Riveting (SPR) [Porcaro 2010], etc. for lightweight vehicles as spot welding 

of lightweight materials is difficult or even impossible. In comparison to spot weld modeling, modeling 

new types of fasteners and joints is more challenging. In fact, most new joining methods exhibit 

complicated joint configurations and strong mechanical interlock such that the simple tied-contact 

approach would be inadequate in producing the desired accuracy to cover complete deformation and 

failure modes for the car crash analysis. Extant literatures for modeling those new joint models and their 

failure characteristics are very limited [Hoang 2013; Sonstabo 2016]. It is clear that the tied-contact 

modeling strategy for treating general connection failures is not sufficient and it could greatly impede the 

overall accuracy of lightweight car safety design and analysis. 

Since the typical tied-contact approach would have a strong restriction to provide an accurate 

geometrical description and mechanical interlock of the joint model, an appropriate meso-scale model 
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characterizing the baseline of the joint structure using solid elements is essentially needed. Additionally, 

because it will be computationally prohibitive to replace shell elements in the whole car body by solid 

elements in order to model the connection failure, a topological coupling technique between solid and 

shell elements using non-matching discretization (non-conforming meshes) is also desired. To resolve 

those intractable numerical issues, the methodology that allows for coupling the meso-scale joint model 

with macro-scale shell structures is apparently needful. Conventional sub-structure technique [LSDYNA] 

commonly used in small deformation analysis is obviously not an option for the large deformation 

problem in connection failure analysis. Other coupling approaches based on the non-intrusive method [Li 

and Durate 2018; Guinard 2018] requires an iterative process between meso and macro computations, 

thus not suitable for explicit dynamics analysis in crashworthiness.  

Compared to above numerical issues, standard finite element methods pose even more significant 

problems to simulate the material failure in the meso-scale joint model. Specifically, the C0-continuity 

assumption in most finite element methods is unable to describe the kinematic discontinuity of 

displacement fields for material separation analysis. Although the element deletion technique can be 

applied to reduce excessive straining and mesh tangling problems caused by the C0-continuity 

assumption, it gives another instance of numerical instability associated with the loss of conservation 

properties in terms of mass and linear momentum. As a consequence, the numerical result could become 

very problematic and parameter sensitive [Wu et al. 2018]. To circumvent this problem, a stable and 

convergent numerical method capable of simulating large deformation and material failure for different 

kinds of meso-scale joint models [Wu 2019] will be acquired. 

In essence, modeling the connection failure in the car structure is a two-scale problem. Most notably, 

this two-scale system should be described by a concurrent meso-macro scale model. Figure 1 provides a 

comprehensive view of Process-Structure-Property-Assembly-Performance loop in the multi-physics and 

multi-scale vehicle manufacturing and safety simulation in which a two-scale technique for modelling the 

jointed structures and their failure behavior will be introduced in this study. 

 

 
 

Figure 1. A comprehensive view of Process-Structure-Property-Assembly-Performance loop in the 

multi-physics and multi-scale vehicle manufacturing and safety simulation 
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Although the idea of concurrent exchange of information between two scales is not new [Talebi et al. 

2014], the development of a two-scale approach for modeling automotive connection failure has not been 

developed. The objective of this study is to present a two-scale computational method that addresses the 

critical need in higher-level modeling of different joints and their connection failure behavior for the 

crash analysis of lightweight vehicles. In the meso-scale, a Lagrangian particle method is employed to 

simulate the interfacial and pullout ruptures in the 3D continuum joint model. This meso-scale joint 

model is embedded concurrently into the macro-scale shell structures using a type of kinematical coupling 

schemes based on the particle immersion technique [Wu et al. 2013, 2016] to achieve the coupling effect, 

thus bypassing the numerical limitations in the tie-contact approach. The reminder of the paper is 

organized as follows: In Section 2, the Momentum-consistent Smoothed Particle Galerkin method [Pan 

2019; Wu 2019] for simulating the large deformation and material failure in meso-scale joint models is 

reviewed. Section 3 describes the weak formulation for the two-scale problem using the immerse 

technique. The implementation procedures are provided in the same section. Numerical examples are 

given in Section 4, and conclusions are made in Section 5. 

2. Overview on MC-SPG method for material failure analysis in meso-scale  

The Smoothed Particle Galerkin (SPG) method [Wu et al. 2017; 2018] is one of the stabilized Lagrangian 

particle methods introduced to simulate the extensive plastic deformation and ductile failure for metal 

fabrication applications [Wu et al. 2018]. The early version of SPG formulation achieves stabilization 

effects by supplementing the Galerkin form with the stabilizing terms that smooth the oscillation 

solutions. This necessarily makes SPG method depends upon additional integration points [Wu et al. 

2016] whose purpose is to compute the stabilization stress in material nonlinear analysis. Since the 

stabilization terms were initially derived based on the linear elasticity theory [Wu et al. 2015], a 

specification of nonlinear stabilization stress [Wu et al. 2018] for the metal plasticity problem is needed in 

the explicit dynamics analysis. Although the method can sufficiently control spurious energy modes in the 

nonlinear analysis, it is not computationally efficient.  

In order to improve the computational efficiency as well as to avoid the fundamental complication in 

the stabilization stress calculation, a new version of SPG formulation was recently developed [Pan et al.  

2019]. In this new formulation, a velocity smoothing algorithm was introduced to stabilize the solution. It 

leads to a new stabilization formulation without the use of residual or non-residual stabilization terms 

[Wu et al. 2017, 2018]. In other words, the new method only requires one integration point per particle 

and no artificial stabilization control parameter is needed. As a result, the specification of modified 

tangent modulus and the evaluation of stabilization stresses can be completely bypassed, thus cutting the 

computational cost. As the new stabilization method is formulated using a smoothed velocity field and is 

consistently fulfilling the conservation of linear and angular momentum, it was called the Momentum-

Consistent Smoothed Particle Galerkin (MC-SPG) method [Wu et al. 2019]. In what follows, the MC-

SPG method is used to simulate the pullout rupture of meso-scale joint model in the connection failure 

analysis. An overview of MC-SPG formulation and its explicit time integration scheme are given as 

follows (see [Pan et al. 2019; Wu et al. 2019] for detail mathematical derivation and formulations). 

2.1 Velocity smoothing for stabilization 

Let 𝑿 ∈ ℝ3designates the position of a material point in the reference configuration 𝛺 ⊂ ℝ3. At time 𝑡𝑛, 

let 𝒙𝑛: = 𝝋𝑛(𝑿, 𝑡𝑛) be the configuration and 𝑼(𝑿) be an incremental displacement field, we have 
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𝝋𝑛+1 = 𝝋𝑛 + 𝑼. For a particle distribution denoted by an index set 𝑍𝐼 = {𝑿𝐼}𝐼=1
𝑁𝑃 ,  approximating the 

velocity field at time 𝑡𝑛 using the first-order meshfree approximation [Wu et al. 2011] gives 

𝒖̇ℎ(𝑿, 𝑡𝑛) = ∑ 𝜙𝐼
𝑎(𝑿)𝐼∈𝑍𝐼

𝒖̂̇𝐼(𝑿, 𝑡𝑛) = ∑ 𝜙𝐼
𝑎(𝑿)𝐼∈𝑍𝐼

𝒖̂̇𝐼 ,  ∀𝑿 ∈ Ω                              (1) 

where NP is the total number of particles in the discretization. 𝜙𝐼
𝑎(𝑿), 𝐼 = 1, ⋯ , 𝑁𝑃 can be regarded as 

the Lagrangian shape functions for velocity field 𝒖̂̇ℎ where the superscript “a” denotes the support size of 

particle I. 𝒖̂̇𝐼 denotes the unsmoothed (oscillating) velocity at particle I. The oscillating of particle 

velocity implies spurious energy modes in the displacement field which is resulting from the use of the 

direct nodal integration (DNI) scheme [Chen et al. 2000] for weak form equations. 

To smooth the oscillating velocity field, an introduction of a smoothed velocity field 𝒖̇𝐼 is defined by 

[Wu et al. 2019] 

𝒖̇𝐼 = 𝒖̇(𝑿𝐼): =
𝑷𝐼

𝑚𝐼
=

∑ 𝑚̂𝐽𝜙𝐼
𝑎(𝑿𝐽)𝒖̂̇𝐽𝐽∈𝑍𝐼

∑ 𝑚̂𝐽𝜙𝐼
𝑎(𝑿𝐽)𝐽∈𝑍𝐼

= ∑ (
𝑚̂𝐽𝜙𝐼

𝑎(𝑿𝐽)

∑ 𝑚̂𝐾𝜙𝐼
𝑎(𝑿𝐾)𝐾∈𝑍𝐼

) 𝒖̂̇𝐽

𝐽∈𝑍𝐼

 

       = ∑ 𝜓𝐼
𝑎(𝑿𝐽)𝒖̂̇𝐽𝐽∈𝑍𝐼

,  ∀𝑿𝐼 ∈ 𝑍𝐼                        (2) 

with 

𝜓𝐼
𝑎(𝑿𝐽) =

𝑚̂𝐽𝜙𝐼
𝑎(𝑿𝐽)

∑ 𝑚̂𝐾𝜙𝐼
𝑎(𝑿𝐾)𝐾∈𝑍𝐼

                                                             (3) 

where 𝜓𝐼
𝑎 is the velocity smoothing function. PI is the smoothed linear momentum of particle I defined by 

𝑷𝐼: = ∑ 𝑚̂𝐽𝜙𝐼
𝑎(𝑿𝐽)𝒖̂̇𝐽𝐽∈𝑍𝐼

                                                               (4) 

𝑚̂𝐽 denotes the unsmoothed lumped mass [Wu et al. 2019] of particle J. Like most Lagrangian particle 

methods, the particle mass 𝑚̂𝐽 is fixed through time in MC-SPG method. Analogously, we can also define 

the smoothed and lumped particle mass using 𝑚̂𝐽to yield 

𝑚𝐼: = ∑ 𝑚̂𝐽𝜙𝐼
𝑎(𝑿𝐽)𝐽∈𝑍𝐼

                                                                   (5) 

We now proceed to update the field variables at particles. Using the central difference integration scheme, 

the smoothed particle velocity 𝑢̇𝐼 is computed using Eq. (2) to give 

𝒖̇𝐼
𝑛+1/2

= ∑ 𝜓𝐼
𝑎(𝑋𝐽)𝒖̂̇𝐽

𝑛+1/2
𝐽∈𝑍𝐼

                                                           (6) 

Consequently, the particle displacements are updated using Eq. (6) by 

 𝒖𝐼
𝑛+1 = 𝒖𝐼

𝑛 + 𝛥𝑡𝑛+1/2𝒖̇𝐼
𝑛+1/2

                                                              (7) 

where 𝛥𝑡𝑛+1/2 = 𝑡𝑛+1 − 𝑡𝑛. The particle strain rate 𝜺̇𝐼 = 𝛻𝑠(𝒖̇𝐼) can be computed accordingly using the 

smoothed particle velocity from Eq. (7). Subsequently, the stress can be updated using the standard 

constitutive routine. Using Eq. (6), the particle density is updated by the continuity equation as 

𝜌𝐼
𝑛+1 = 𝜌𝐼

𝑛 (1 − 𝛥𝑡𝑛+1/2𝜵 ⋅ 𝒖̇𝐼
𝑛+1/2

)                                                         (8) 
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To compute internal force terms, we need the new particle volume. Using the updated particle density in 

Eq. (8), the new particle volume can be obtained by 

𝑉𝐼
𝑛+1 =

𝑚̂𝐼

𝜌𝐼
𝑛+1                                                                       (9) 

Finally, it is necessary to update the unsmoothed particle velocity using Eq. (6) for the next time step. 

Let’s first approximate the increment of unsmoothed particle velocity using the smoothed acceleration 

from previous time step by  

                             𝛥𝒖̂̇𝐼
𝑛 ≈ 𝛥𝑡𝑛 ∑ 𝜙𝐽

𝑎(𝑿𝐼)𝒖̈𝐽
𝑛

𝐽∈𝑍𝐼
                                                           (10) 

where 𝛥𝑡𝑛 = 𝑡𝑛+1/2 − 𝑡𝑛−1/2. The update of unsmoothed particle velocity is then accomplished by 

𝒖̂̇𝐼
𝑛+1/2

= 𝒖̂̇𝐼
𝑛−1/2

+ 𝛥𝒖̂̇𝐽
𝑛 

                                                                          = 𝒖̂̇𝐼
𝑛−1/2

+ 𝛥𝑡𝑛 ∑ 𝜙𝐽
𝑎

𝐽∈𝑍𝐼
(𝑿𝐼)𝒖̈𝐽

𝑛                                (11) 

It is worthwhile to note that in general 𝜙𝐼
𝑎(𝑿𝐽) ≠ 𝜙𝐽

𝑎(𝑿𝐼). In fact, ∑ 𝜙𝐼
𝑎(𝑿𝐽)𝐽∈𝑍𝐼

 in Eq. (4) and 

∑ 𝜙𝐽
𝑎(𝑿𝐼)𝐽∈𝑍𝐼

 in Eq. (11) represent two different types of kernel summations, the gather type and the 

scatter type [Wu et al. 2019], respectively. The gather type of kernel summation [Liu and Liu 2003] is 

mainly used in meshfree collocation methods such as Smoothed Particle Hydrodynamics (SPH). On the 

other hand, the scatter type of kernel summation is usually adopted in meshfree Galerkin methods such as 

Element-free Galerkin method [Belytschko et al. 1994] and Reproducing Kernel Particle Method [Liu et 

al. 1995]. Although the principle idea of velocity smoothing for stabilization using either one of kernel 

summations is quite simple and intuitive, any arbitrary smoothing of velocity field without a precaution 

could lead to a loss of conservation properties for linear and angular momentums. It has been shown [Pan 

et al. 2019; Wu et al. 2019] that by a specific combination of these two kernel summations as described in 

Eqs. (1) ~ (11) for the velocity smoothing, MC-SPG method can consistently preserve the linear and 

angular momentums globally for both semi-discrete and full discrete equations. 

2.2 Large deformation analysis  

As mentioned previously, material failure in meso-scale joint models often involves large deformation 

and material rupture which need to be addressed carefully in the computation. It is known that standard 

Lagrangian kernel inevitably causes the numerical breakdown when the total form of deformation 

gradient, 𝑭: =
𝜕𝝋

𝜕𝑿
, in Lagrangian particle ceases to be invertible during the large deformation analysis. 

This is similar to the mesh distortion problem in the Lagrangian finite element method. To deal with this 

problem in the large deformation analysis, the MC-SPG method is endorsed with an adaptive anisotropic 

Lagrangian kernel [Wu et al. 2016] which allows a recursive update of the deformation gradient when the 

strict use of total form of deformation gradient is no longer applicable. Following the development in [Wu 

et al. 2016], an incremental form of deformation gradient is utilized in combination with the adaptive 

anisotropic Lagrangian kernel in this study. The update of deformation gradient can be written as 

           𝑭𝑛+𝑚 = 𝑭𝑛 + 𝜵𝑿(𝑼(𝑿)) = (𝑰 + 𝜵𝑛𝒖)𝑭𝑛 = 𝑭̑𝑛+𝑚𝑭𝑛                                (12) 

𝑼(𝑿): = 𝒖(𝝋𝑛(𝑿, 𝑡𝑛))                                                              (13) 
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where 𝜵𝑿(⋅) denotes the gradient with respect to 𝑿 ∈ 𝛺, and 𝜵𝑛(⋅) is the gradient with respect to 

𝒙(𝑿, 𝑡𝑛). I is the identity matrix. 𝑭̑𝑛+𝑚(𝒙̑) is the decomposed deformation gradient, from t=tn to tn+m∈

ℝ+, computed based on the new reference configuration with the updated anisotropic Lagrangian kernel. 

It is given by [Wu et al. 2016] 

𝑭̑𝑖𝑗
𝑛+𝑚(𝑿𝐽) =

𝜕𝒙̑𝑖

𝜕𝑿̑𝑗
= 𝜹𝑖𝑗 + ∑

𝜕𝜙𝐼
𝑎(𝑿̑𝐽)

𝜕𝑿̑𝑗
𝒖̑𝑖𝐼(𝑿, 𝑡𝑛+𝑚)𝐼∈𝑍𝐼

                                    (14) 

where 𝒙̑ = 𝑿̑ + 𝒖̑(𝑿, 𝑡𝑛+𝑚) is a position vector based on the new reference configuration, i.e., 𝑿̑ =

𝒙(𝑿, 𝑡𝑛). The anisotropic Lagrangian kernel is updated constantly over a period of time. The anisotropic 

shape domain of cubic spline kernel function 𝜔𝐼
𝑎(𝑿̑𝐽) [Wu et al. 2011], defined for particle neighbor-

search, deforms and rotates according to the Lagrangian motion between each two adaptive Lagrangian 

kernel steps [Wu et al. 2016]. Using the adaptive anisotropic Lagrangian kernel, the deformation gradient 

differentiates the incremental form from the total form in numeric. Our numerical experiences suggest 

that the update procedure combining the incremental form of deformation gradient and adaptive 

anisotropic Lagrangian kernel is very suitable for the large deformation analysis of metal plasticity 

problems [Wu et al. 2016; 2018]. We address readers to the reference [Wu et al. 2016] for a 

comprehensive description of the approach. 

2.3 Material failure analysis  

A bond-based failure algorithm, motivated by the peridynamics approach [Silling 2000] for three-

dimensional material failure analysis, has been employed to simulate the ductile failure in SPG method 

[Wu et al. 2017]. The peridynamics approach introduces material failure through the bond breakage. 

Given a length of the bond ‖𝑿𝐽 − 𝑿𝐼‖ for a particle pair consisting of particles I and J in the initial 

configuration, the stretch ratio 𝑒𝐼𝐽 of the bond is defined by  

                         𝑒𝐼𝐽: =
‖𝒙𝐽−𝒙𝐼‖

‖𝑿𝐽−𝑿𝐼‖
                                                             (15) 

In brittle fracture analysis, a critical stretch ratio 𝑒𝑐𝑟𝑖𝑡 relating to the fracture energy released rate can be 

defined [Ren et al. 2017] for bond breakage. However, for most ductile failure, fracture energy released 

rate is generally not available. In engineering practice, a failure criterion measured by the effective plastic 

strain is often considered.    

Since the bond is a representation of a connection between two particles, two neighboring particles 

can simply be regarded as disconnected during the neighbor searching when their averaged effective 

plastic strain reaches a respective critical value. This simplification of bond breakage prompts a bond-

based failure algorithm in SPG method [Wu et al. 2017] to model the three-dimensional ductile failure. 

Consequently, the cubic spline kernel function 𝜔𝐼
𝑎(𝑿̑𝐽) used in neighbor-search can be modified by 

introducing a characteristic function  𝜒(|𝑿̑𝐽 − 𝑿̑𝐼|) for a pair of particles I and J to describe the bond 

breakage such that 

                                     

𝜔̑𝐼
𝑎(𝑿̑𝐽) =  𝜒(|𝑿̑𝐽 − 𝑿̑𝐼|)𝜔𝐼

𝑎(𝑿̑𝐽)                                                       (16) 

where 



Invited Book Chapter in: Griebel M., Schweitzer M. (eds) IWMMPDE 2020. Lecture Notes in Computational Science and 

Engineering. Springer, Cham. 

 

8 

 

𝜒(|𝑿̑𝐽 − 𝑿̑𝐼|): = {
1, 𝑖𝑓  𝑿̑𝐽 ∈ supp(𝜙𝐼

𝑎)  and (𝜀ĪJ
𝑃 < 𝜀𝑐̄𝑟𝑖𝑡

𝑃  and 𝑒𝐼𝐽 < 𝑒𝑐𝑟𝑖𝑡)

0, otherwise  
                          (17) 

𝜀𝐼̄𝐽
𝑃 = (𝜀̄𝑃(𝑿̑𝐼) + 𝜀̄𝑃(𝑿̑𝐽)) /2 represents an averaged effective plastic strain in the bond ‖𝑿𝐽 − 𝑿𝐼‖, and 

𝜀̄𝑃  is the effective plastic strain. 𝜀𝑐̄𝑟𝑖𝑡
𝑃  is the critical effective plastic strain for bond breakage. 

Additionally, we set the stretch ratio 𝑒𝐼𝐽 < 𝑒𝑐𝑟𝑖𝑡 = 1.0 in our numerical analysis which implies that the 

bond failure does not occur under compression. This implication is valid for most metal failure process.  

It is important to note that the effective plastic strain at each particle increases monotonically during 

the course of deformation. Because of that, the kinematic disconnection in a particle pair is a permanent 

and irreversible process. This is a substantial characteristic for the bond-based failure mechanism in metal 

failure analyses since the non-physical material self-healing issues resulting from generic neighbor 

searching algorithm can be completely exempted from the material failure simulation. This simplicity and 

unique computational properties of bond-based failure algorithm make SPG method an attractive 

numerical tool in ductile metal failure analysis.  

3. Concurrent two-scale problem 

Under the framework of variational formulation, an existing finite element code can be easily modified to 

embed the meso-scale joint model using SPG method for large scale structural analysis with connection 

failure.    

3.1 Weak form 

The variational equations for macro-scale structure and meso-scale joints in a transient dynamic problem 

can be formulated using the integration by part to find the macro-scale displacement field 𝒖𝐺(𝑿𝐺 , 𝑡) ∈
𝑉𝐺 = {𝒖𝐺 ∈ 𝐻1(𝛺𝐺): 𝒖𝐺 = 𝒖𝑔  𝑜𝑛 𝜕𝛺𝑔} and the meso-scale displacement field 𝒖𝐿(𝑿𝐿, 𝑡) ∈ 𝑉𝐿 =

{𝒖𝐿 ∈ 𝐻1(𝛺𝐿): 𝒖𝐿 = 𝒖𝐺   𝑜𝑛 𝜕𝛺𝑐}, such that for arbitrary variation 𝛿𝒖𝐺 ∈ 𝑉0
𝐺 = {𝒖𝐺 ∈ 𝐻1(𝛺𝐺): 𝒖𝐺 =

0  𝑜𝑛 𝜕𝛺𝑔} and 𝛿𝒖𝐿 ∈ 𝑉0
𝐿 = {𝒖𝐿 ∈ 𝐻1(𝛺𝐿): 𝒖𝐿 = 0  𝑜𝑛 𝜕𝛺𝑐}, the following equations are satisfied:  

∫ 𝜌𝒖̈𝐺 ⋅ 𝛿𝒖𝐺𝑑𝛺
𝛺𝐺/𝛺𝐿

+ ∫ 𝝈: 𝜵𝑠(𝛿𝒖𝐺)𝑑𝛺
𝛺𝐺/𝛺𝐿

= ∫ 𝒃 ⋅ 𝛿𝒖𝐺

𝛺𝐺/𝛺𝐿
𝑑𝛺 + ∫ 𝒉 ⋅

𝜕𝛺𝑛

𝛿𝒖𝐺𝑑𝑠 + ∫ 𝒇𝑐 ⋅ 𝛿𝒖𝐺𝑑𝑠
𝜕𝛺𝑐

 

      (18)   

∫ 𝜌𝒖̈𝐿 ⋅ 𝛿𝒖𝐿𝑑𝛺
𝛺𝐿 + ∫ 𝝈: 𝜵𝑠(𝛿𝒖𝐿)𝑑𝛺 =

𝛺𝐿 0     (19)   

where 𝛺𝐺  and 𝛺𝐿 denote the macro-scale and meso-scale domains, respectively. 𝒃 is the body force 

vector and 𝝈 is the Cauchy stress obtained from the constitutive law. The 𝜕𝛺𝑔 notation  describes a 

Dirichlet boundary imposed by a displacement 𝒖𝑔 and 𝜕𝛺𝑛 is the Neumann boundary prescribed by a 

surface traction 𝒉 with 𝜕𝛺𝑔 ∩ 𝜕𝛺𝑛 = 0. 𝜕𝛺𝑐  is the coupling interface of two scales as shown in Fig. 2, 

where the kinematic constraint equations 𝒖𝐿 = 𝒖𝐺 , 𝒖̇𝐿 = 𝒖̇𝐺 are imposed in the meso-scale computation 

and 𝒇𝑐 is the constrained force computed from the meso-scale.  
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Figure 2. Two-scale models of joints (bolts) in large scale structure 

Note that the size of joints is usually much smaller than that of the overall domain in the macro-scale, and 

the internal energy ∫ 𝝈: 𝜵𝑠(𝛿𝒖𝐺)𝑑𝛺
𝛺𝐿  is ignorable due to the constraints on the coupling interface 𝜕𝛺𝑐, so 

that Eq. (18) can be estimated as follows to significantly reduce the meshing and computational cost: 

∫ 𝜌𝒖̈𝐺 ⋅ 𝛿𝒖𝐺𝑑𝛺
𝛺𝐺 + ∫ 𝝈: 𝜵𝑠(𝛿𝒖𝐺)𝑑𝛺

𝛺𝐺 = ∫ 𝒃 ⋅ 𝛿𝒖𝐺
𝛺𝐺 𝑑𝛺 + ∫ 𝒉 ⋅

𝜕𝛺𝑛
𝛿𝒖𝐺𝑑𝑠 + ∫ 𝒇𝑐 ⋅ 𝛿𝒖𝐺𝑑𝑠

𝜕𝛺𝑐
      (20)   

The base material around joints in the meso-scale shown in Fig. 2 has two parts, where the one with 

severe material deformation and failure is handled by SPG, and the other is modeled by standard FEM 

solid elements to save CPU time.  By substituting the FEM and SPG approximations 𝒖𝐺(𝑿𝐺 , 𝑡) =

∑ 𝑁𝐼
𝐺

𝐼 (𝑿𝐺)𝑼𝐼
𝐺(𝑡), 𝒖𝐿(𝑿𝐿, 𝑡) = ∑ 𝜙𝐼

𝐿
𝐼 (𝑿𝐿)𝑼𝐼

𝐿(𝑡) into Eqs. (19) and (20), the semi-discrete equations can 

be expressed by the following algebraic equations 

𝑴𝐺𝑼̈𝐺 = 𝑭𝑒𝑥𝑡 + 𝑭𝑐 − 𝑭𝑖𝑛𝑡
𝐺            (21)   

𝑴𝐿𝑼̈𝐿 = −𝑭𝑖𝑛𝑡
𝐿             (22)   

where 

𝑴𝐼𝐽
𝐺 = ∫ 𝜌𝑁𝐼

𝐺𝑁𝐽
𝐺𝑰𝑑𝛺

𝛺𝐺        (23)   

𝑭𝐼
𝑒𝑥𝑡 = ∫ 𝒃𝑁𝐼

𝐺
𝛺𝐺 𝐽0𝑑𝛺 + ∫ 𝒉𝑁𝐼

𝐺
𝜕𝛺𝑛

𝑑𝑠      (24) 

𝑭𝐼
𝑐 = ∫ 𝒇𝐼

𝑐
𝜕𝛺𝑐

𝑑𝑠                  (25) 

𝑭𝑖𝑛𝑡,𝐼
𝐺 = ∫ 𝝈0:

𝛺𝐺 𝜵𝑿𝐺𝑁𝐼
𝐺𝑑𝛺        (26)   

𝑴𝐼𝐽
𝐿 = ∫ 𝜌𝜙𝐼

𝐿𝜙𝐽
𝐿𝑰𝑑𝛺

𝛺𝐿        (27) 

𝑭𝑖𝑛𝑡,𝐼
𝐿 = ∫ 𝝈0:

𝛺𝐿 𝜵𝑿𝐿𝜙𝐼
𝐿𝑑𝛺         (28) 

, 𝑁𝐺  and 𝜙𝐿  are approximation functions in the macro and meso scales, respectively. 𝝈0 is the first Piola-

Kirchhoff stress tensor. 

Considering the non-conforming mesh shown in Fig. 3 at the interface across two scales, the 

kinematic constraints in the meso-scale are approximated as follows: 
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𝑼𝐼
𝐿 ≡ 𝑼𝐿 (𝑿𝐼

𝐿) = ∑ 𝑁𝐽
𝐺 (𝜖(𝑿𝐼

𝐿))𝐽 𝑼𝐽
𝐺 , for ∀𝑿𝐼

𝐿 ∈ 𝜕𝛺𝑐   (29) 

𝑼̇𝐼
𝐿 ≡ 𝑼̇𝐿 (𝑿𝐼

𝐿) = ∑ 𝑁𝐽
𝐺 (𝜖(𝑿𝐼

𝐿))𝐽 𝑼̇𝐽
𝐺 , for ∀𝑿𝐼

𝐿 ∈ 𝜕𝛺𝑐   (30) 

where 𝜖(𝑿𝐼
𝐿) is a projection function mapping 𝑿𝐼

𝐿 into the macro-scale reference configuration 𝑿𝐺 . In 

order to enforce the through-thickness constraints due to the rotational degrees of freedom in the macro-

scale shells, Eqs. (29) and (30) need to be modified by 

𝑼𝐼
𝐿 ≡ 𝑼𝐿 (𝑿𝐼

𝐿) = ∑ 𝑁𝐽
𝐺 (𝜖(𝑿𝐼

𝐿))𝐽 𝑼𝐽
𝐺 + |𝜖(𝑿𝐼

𝐿) − 𝑿𝐼
𝐿|∆𝒏(𝑿𝐼

𝐿, 𝑡), for ∀𝑿𝐼
𝐿 ∈ 𝜕𝛺𝑐 (31) 

𝑼̇𝐼
𝐿 ≡ 𝑼̇𝐿 (𝑿𝐼

𝐿) = ∑ 𝑁𝐽
𝐺 (𝜖(𝑿𝐼

𝐿))𝐽 𝑼̇𝐽
𝐺 + |𝜖(𝑿𝐼

𝐿) − 𝑿𝐼
𝐿|∆𝒏̇(𝑿𝐼

𝐿, 𝑡), for ∀𝑿𝐼
𝐿 ∈ 𝜕𝛺𝑐 (32) 

where  𝒏(𝑿𝐼
𝐿, 𝑡) is the unit vector normal to the macro-scale middle plane pointing to the meso-scale 

material point 𝑿𝐼
𝐿. Note that the displacement and velocity for ∀𝑿𝐼

𝐿 ∈ 𝜕𝛺𝑐  in Eqs. (31) and (32) need to 

be further updated by [𝑼̈𝐼
𝐿 ∙ 𝒏(𝑿𝐼

𝐿, 𝑡)]𝒏(𝑿𝐼
𝐿, 𝑡) to take into account the deformation along the thickness 

direction. 

Figure 3. The non-conforming coupling interface between shell (macro-scale) and solid (meso-scale) 

The constrained force can be computed by integrating all the contribution from the meso-scale internal 

force at the coupling interface 𝜕𝛺𝑐 as follows: 

𝑭𝐼
𝑐 ≡ 𝑭𝑐 (𝑿𝐼

𝐺) = ∑ 𝑁𝐼
𝐺 (𝜖(𝑿𝐽

𝐿))𝐽 𝑭𝑖𝑛𝑡,𝐽
𝐿 , for ∀𝑿𝐼

𝐺 ∈ 𝜕𝛺𝑐   (33) 

, and the corresponding constrained moment at the coupling interface 𝜕𝛺𝑐 for the macro-scale shell 

structure is expressed by 

 𝓜𝐼
𝑐 ≡ 𝓜𝑐 (𝑿𝐼

𝐺) = ∑ 𝑁𝐼
𝐺 (𝜖(𝑿𝐽

𝐿))𝐽 [|𝜖(𝑿𝐼
𝐿) − 𝑿𝐼

𝐿|𝒏(𝑿𝐼
𝐿, 𝑡) × 𝑭𝑖𝑛𝑡,𝐽

𝐿 ], for ∀𝑿𝐼
𝐺 ∈ 𝜕𝛺𝑐 (33) 

3.2 Numerical procedure 

Modeling a 3D continuum joint structure in meso-scale requires a refined discretization and consequently 

smaller time step size (∆𝑡𝐺 ≫ ∆𝑡𝐿) in explicit dynamic computation. Instead of imposing the same small 

time step size on the whole structure, we isolate the computation in meso-scale model but make it run 

simultaneously with macro-scale structures using the sub-cycling technique. The co-simulation is 

performed using master/slave setup, where the collective communication between master and slave jobs is 
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carried out at synchronization points currently through MPI. An adaptor API is called by two scale jobs to 

exchange data and synchronize the time integration so that the main structure of existing finite element 

code needs no change to be adopted in both jobs. Figure 4 shows the proposed co-simulation flowchart 

using central difference time integration scheme. 

 

Figure 4. The co-simulation flowchart  

4. Numerical examples 

4.1 Simple tension problem 

Consider a tension test on a coupon using both single-scale solid and two-scale shell/solid models as 

shown in Fig 5. The dimension is 24 × 8 × 4𝑚𝑚 (𝐿 × 𝑊 × 𝐻). The material density is 7.85 × 10−3𝑔/

𝑚𝑚3, the Young’s modulus is 210𝐺𝑃𝑎 with the yield stress 1𝐺𝑃𝑎 and the kinematic hardening 𝐸𝑡 =

1𝐺𝑃𝑎. The constant velocity 20𝑚𝑚/𝑠 is applied on both ends. SPG with bond breakage 𝜀𝑐̄𝑟𝑖𝑡
𝑃 = 0.5 is 

used in the center portion of solid models to better simulate material large deformation and separation. 

The time step size of the single-scale solid model and macro-scale shell model is 3.5 × 10−5𝑠 and that of 

the meso-scale model is 8.5 × 10−6𝑠. We expect to observe material necking due to plastic deformation 

in both width and thickness directions using solid formulation. 

MPI initialization 

Initialize master job 

(macroscale model) 

Initialize slave job 

(mesoscale model) 

Initialize adapter 

with control parameters 

& interface nodes 

 

Time stepping 

𝑡𝑛+1
𝐺 = 𝑡𝑛

𝐺 + ∆𝑡𝑛
𝐺  

Compute 𝑭⬚
𝑒𝑥𝑡, 𝑭𝑖𝑛𝑡

𝐺  

 

Time stepping 

𝑡𝑚+1
𝐿 = 𝑡𝑚

𝐿 + ∆𝑡𝑚
𝐿  

Compute 𝑭𝑖𝑛𝑡
𝐿 , 𝑭𝑐 , 𝓜𝑐 

 

Coupling momentum 

𝑷𝑐 = 𝑷𝑐 + 𝑭𝑐∆𝑡𝑚
𝐿  

℘𝑐 = ℘𝑐 + 𝓜𝑐∆𝑡𝑚
𝐿  

𝑡𝑚+1
𝐿 = 𝑡𝑛+1

𝐺  

∆𝑡𝑚+1
𝐿 = 𝑚𝑖𝑛(𝑡𝑛+1

𝐺 − 𝑡𝑚+1
𝐿 , ∆𝑡𝑚+1

𝐿 ) 

N 

𝑭𝑐 =
𝑷𝑐

∆𝑡𝑛
𝐺 , 𝓜𝑐 =

℘𝑐

∆𝑡𝑛
𝐺   

Y 

Update coupling nodal 

force with  𝑭⬚
𝑐 , 𝓜⬚

𝑐  

Update nodal 

displacement & velocity 

𝑼𝐺(𝑿𝐺 , 𝑡𝑛+1
𝐺 ), 𝑼̇𝐺(𝑿𝐺 , 𝑡𝑛+1

𝐺 ) 

for ∀𝑿𝐺 ∈ 𝜕𝛺𝑐 

Next synchronization time 

𝑡𝑛+2
𝐺 = 𝑡𝑛+1

𝐺 + ∆𝑡𝑛+1
𝐺  

Update interface 

kinematic constraints 

Initialize 𝑷𝑐 = ℘𝑐 = 0 

Use adapter to synchronize 

Impose interface 

kinematic constraints 
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Figure 5. Simple tension test 

 
Top view 

 
Side view 

Figure 6. Deformation profile 

                 

Figure 7. Effective plastic strain (EPS) contour   

 

Figure 8. Resultant force curve 

𝑣 

𝑣 

SPG particles 

Solid FE 

Shell FE 

Single-scale Meso-scale 

Single-scale solid model        Meso-scale solid model 

Single-scale solid model         Macro-scale shell model       Meso-scale solid model 
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Figure 6 shows that the shape of necking obtained by the two-scale model matches the single-scale result 

very well. The overall distribution of effective plastic strain (EPS) is very similar between two models as 

shown in Fig. 7 although the meso-scale result is relatively more localized. The meso-scale resultant force 

curve in Fig. 8 agrees with the single-scale result during the loading process, where the minor oscillation 

comes from the macro-meso coupling.  

4.2 Single connection failure analysis 

Consider a single joint (bolt) as shown in Fig. 9, where two shells with 1𝑚𝑚 thickness are connected by a 

rigid bolt. The surrounding base material of the joint is modeled by solids in the meso scale, and SPG 

with bond breakage 𝜀𝑐̄𝑟𝑖𝑡
𝑃 = 0.1 is used where the large material deformation and failure is expected to 

occur. The material density is 7.85 × 10−3𝑔/𝑚𝑚3, the Young’s modulus is 210𝐺𝑃𝑎 with the yield stress 

0.2𝐺𝑃𝑎 and the kinematic hardening 𝐸𝑡 = 20𝐺𝑃𝑎. The constant velocity 10𝑚𝑚/𝑠 is applied on the 

edges as shown in Fig. 9. The time step size of the macro-scale shell model is 1.66 × 10−4𝑠 and that of 

the meso-scale model is around 2.0 × 10−5𝑠.  

 

                 
      Two-scale model                               Meso-scale discretization 

Figure 9. Single joint problem 

       
       𝑡 = 0.2𝑠            𝑡 = 0.25𝑠               𝑡 = 0.3𝑠   

Figure 10. Progressive deformation profile and EPS contour (fringe level 0~0.4) 

The progressive plots in Fig. 10 show reasonable deformation in both macro and meso scales and the 

desirable material failure pattern captured by SPG in the meso scale. Note that the material failure can be 

simulated only in the meso-scale SPG solids not in the macro-scale shells. The matching of deformation 

profile at the coupling interface between the meso-scale solids and macro-scale shells in both translational 

and rotational degrees of freedom indicates that the through-thickness constraints are accurately imposed 

by the proposed two-scale coupling scheme.   

Macro-scale shell structure Rigid bolt 

Solid FE 

SPG particles 
𝑣 

𝑣 

𝑣 
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1⬚ 

2⬚ 

3⬚ 
4⬚ 

5⬚ 

1′ 

2′ 

3′ 
4′ 

5′ 

Bolt Screw 

Shell 

Fixed end 

𝑣 

4.3 Crash tube analysis 

Consider a crash tube problem as shown in Fig. 11, where five pairs of joints fasten two layers of shell 

structure with 1𝑚𝑚 thickness. The crash tube has one end fixed and the other subjected to a constant 

velocity 10𝑚𝑚/𝑠. Ten joints are rigid bolts in the design case I while two joints 3 − 3′ are replaced by 

rigid screws in the case II. The modeling of meso scale joints including the material parameters are the 

same as the previous example in 4.2. The time step size of the macro-scale shell model varies in 

(1.0~1.6) × 10−4𝑠, and that of the meso-scale model falls into the range of (1.3~3.2) × 10−5𝑠 for the 

case I and (1.1~1.7) × 10−5𝑠 for the case II with smaller mesh size, where the variation of time step 

sizes is due to the mesh distortion of finite elements as the material deforms.  

 

 

 

 

 

 

 

 

 

 

          Two-scale model                 Meso-scale model of joints (cross-section view)  

Figure 11. Crash tube problem 

   
Case I                 Case II 

Figure 12. Final deformation profile of crash tube analyses (45o angle of view and side view) 

Figure 12 shows the final deformation of the macro-scale shell structure for both cases, where the case II 

with stronger screw joints 3 − 3′ has better energy-absorption shape. Note that the meso-scale solids 

including rigid bolts and screws can only interact with the macro-scale shells through the coupling 

interface, and there is no contact defined between the meso-scale solids and macro-scale shells. Figure 13 

shows different failure pattern of joints 1~5 for both cases, and the corresponding jointing force curves 

are plot in Fig. 14 where we can clearly see the highest peak force at the stronger screw joint 3 in the case 

II. 
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Case I 

         

Case II 

Figure 13. Connection failure with EPS contour (joint ID 1,2,3,4,5 from left to right) 

    

   

Figure 14. Jointing force curve 

5. Conclusions 

Today’s vehicle engineers continue to search for ways to maximize performance and efficiency of new 

cars. One approach that has gained huge momentum in automotive industry is the light-weighting through 

advanced material design and fabrication. The integration of stronger, thinner, lighter and mixed materials 

in new cars has led to significant weight reductions as well as the new jointing technology. On the other 

hand, inappropriate joining method and unexpected joint failure detected in later stage of new car 

Joint 1 Joint 2 Joint 3 

Joint 4 Joint 5 
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development cycle, have frequently resulted in design compromises that can adversely affect weight 

savings available by using advanced materials. Consequently, further light-weighting opportunities from 

optimized use of new materials will not be possible without improved joint modeling techniques for the 

crashworthiness analysis.   

Modeling various joints and their failure in a full car finite element model using the tie-contact 

approach is very time consuming, expansive and error prone. From a vehicle engineer’s view point, it is 

always advantageous to adopt an effective computational model for the simulation of connection failure 

in crashworthiness analysis. In this study, we have introduced a concurrent two-scale method that is 

suitable for modeling various joint types and their failure analyses in component design level. Unlike the 

tie-contact approach where only very few joint models such as spot weld can be idealized to model 

certain connection failure modes, the present two-scale approach captures meso-structure evolution which 

is applicable for modeling most connection failures modes in different joint models. Although we have 

focused on the pullout rupture in this study, the consideration of interfacial rupture in the simulation is not 

limited by the proposed method. The numerical results in this study suggest that the present method is 

able to produce the desired pullout rupture mode in the connection failure analysis. Using this two-scale 

approach, vehicle engineers will be able to set up joint models easily in the finite element car assembly 

process. This nice feature of present method can minimize human interactions with software and enable 

more parallel and collaborating engineering work. It is also beneficial to vehicle engineers in analyzing 

the joining effect of car crash model and to improve the structure integrity during the vehicle virtual 

development stage. To the authors’ best knowledge, other existing technology has not been able to 

demonstrate similar capability in automotive crash analysis.  

Although the present method is studied exemplary in the component design level, its extension to the 

full car crashworthiness analysis will not be technically difficult. It requires the establishment of a 

comprehensive database containing all necessary information for a variety of meso-scale joint models. It 

also requires the design of scripting functionalities in a dedicated graphical user interface for pre- and 

post-processing. Those developments will be discussed in the near future.  
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