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ABSTRACT

Mesh distortion induced numerical instability is a major roadblock in automotive crashworthiness finite
element simulations. Remedies such as wrapping elements with null shells and deletion of distorted
meshes have been adopted but none of them seems robust enough to survive various scenarios.
Meshfree methods have been developed over the past almost twenty years in view of their capabilities in
dealing with large material deformation and separation, but have remained in academic research due to
their unaffordable high computational cost in solving large-scale industrial applications. This paper
presents a coupled meshfree/finite-element method which allows engineers to model the severe
deformation area with the meshfree method while keeping the remaining area modeled by the finite
element methods. The method is implemented into LS-DYNA version 971 and its later versions so that it
is available for automotive crashworthiness simulations. In the paper, one linear patch test and three
crash examples are presented to demonstrate the accuracy of the meshfree formulation, its effectiveness
in resolving mesh distortion difficulty, and the efficiency of the coupled meshfree/finite element solver in
handling large-scale models.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Today’s vehicle development process heavily relies on
computer-aided engineering (CAE) analysis. In most scenarios, the
CAE analysis provides quick and accurate assessment of newly
designed vehicle components and systems in terms of their man-
ufacturability and targeted performance. Also, the analysis helps to
improve the design by virtually optimizing design parameters to
achieve the design target at best. With the usage of the CAE anal-
ysis, the amount of expensive and time-consuming physical tests is
greatly reduced nowadays. Still, there are scenarios current CAE
technologies cannot well comprehend. Exemplary problems are
events and processes involving severe deformation, material
separation, fluid-solid interaction, phase changing and other
complex physics.

One of the obstacles limiting current CAE tools’ capability is the
mesh quality problem. The finite element (FE) method employed in
the CAE tools models the physical domain with discrete, non-
overlapping conforming meshes. The order of the finite element
approximation being constructed at each element degenerates
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when the element has high aspect-ratio or geometric distortion.
Consequently, the accuracy of the FE-based CAE analysis degrades.
Sometimes the analysis even fails. This often occurs in the simu-
lations involving severe deformation or large shape change such as
in the numerical modeling of vehicle crash events. A good exem-
plary problem is the frontal Offset Deformable Barrier (ODB) model.
The ODB is used in Insurance Institute for Highway Safety (IIHS)
40MPH Frontal Offset Crash Test and European New Car Assess-
ment Program (Euro NCAP) 64KPH (40MPH) Frontal Offset Crash
Test. As shown in Fig. 1, the honeycomb barrier is severely
compressed in the physical frontal offset impact test [1]. In its
corresponding virtual crash simulation, the mesh-based ODB
model undergoes the same amount of large deformation, which
often results in severe mesh distortion in the model and causes
solid elements to have negative element volume. The finite element
analysis stops when the negative element volume is detected. The
negative element volume is not only non-physical but also violates
basic conditions on motion in the finite element theory, that is, the
determinant of deformation gradient cannot be negative. Even if
the analysis continues, the accumulated approximation error due to
the mesh distortion usually leads the analysis to an inaccurate
solution. Many remedies have been adopted to resolve the distor-
tion problem. One popular approach is to wrap each element with
null shells and specify contact constraints among these null shells
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Fig. 1. Post-test offset deformable barrier (after Mayer et al. [1]).

to prevent any inverted elements. This not only introduces artificial
stiffness into the system and therefore pollutes the solution accu-
racy but also adds computational effort into the analysis. The
second common approach is simply to delete the distorted meshes
from the model. This method can only be practiced when the
number of distorted elements in the parts is relatively small and the
damage to the solution accuracy due to the deletion is negligible.
The third frequent approach is to re-mesh the problematic area
carefully to avoid any fatal distortion, which is a trial-and-error
approach since under large deformation no mesh is bulletproof. In
summary, to date there is no single approach which is viable
enough to survive various virtual crash simulation scenarios.

Meshfree methods have been proposed and developed to
resolve this mesh-distortion difficulty since the 1990s due to their
‘meshfree’ characteristic. Typical meshfree methods are Element
Free Galerkin (EFG) Method, Reproducing Kernel Particle Method,
HP-clouds method and Partition of Unity method [2-7]. The
common feature of these methods is their ability to construct their
approximation functions at discrete points of a domain without
usage of element connectivity among the discrete points. The
approximation functions are applied in interpolating domain
variables so that the corresponding math problems can be solved.
Representative meshfree approximations are moving least squares
approximation and reproducing kernel approximation. These
approximation functions can have high order smoothness if
needed, therefore are able to exactly approximate functions of high
order monomials. Applications of these approximations in solving
nonlinear large deformation or material separation problems
[5,8,9,17] have shown their great advantages over the conventional
FE methods in terms of model adaptivity and solution accuracy.
However, the meshfree methods consume much higher CPU time
than the FE methods, which greatly limits their applications in
solving large-scale industrial problems. A complete review on
meshfree methods can be found in [21].

The idea of coupling the meshfree method with the existing FE
methods was originally proposed by meshfree researchers for the
purpose of imposing essential boundary conditions in meshfree
computations as shown in [10-13]. Nevertheless, it started the idea
of patching the meshfree formulation with the FE formulation
within one model. The coupling allows the meshfree method to be
applied only to the area where the meshfree method is needed

while the low-cost FE method is used for the remainder of the
model. In this way, the meshfree method can be used in solving
large-scale problems without big CPU penalty, since in most cases
large deformation or material separation only occurs at a locally
confined area which is relatively small compared to the overall
model. A more general review on several coupling methods was
given in [18]. The major challenge in the coupling is to maintain the
desired order of continuity across the meshfree and FE zones, and
have the overall approximation to meet desired consistency
conditions. Various mixed formulations [10,11,13,19,20] were
proposed but none of them was fully developed for industrial
applications.

In this paper, a novel coupled meshfree/FE method is presented.
It is intended for large-scale explicit dynamic simulations. The EFG
method is employed in the meshfree formulation. The approxi-
mation functions along the interfaces between the meshfree and FE
zones are designed to ensure the first-order continuity in the
approximations across the interfaces and meet the first-order
consistency condition. Section 2 of the paper reviews the Moving
Least Squares approximation used in the EFG method. Section 3
presents the proposed coupled meshfree/finite element formula-
tion for three-dimensional explicit dynamic problems, followed in
Section 4 by a linear patch test and three numerical examples.
Conclusions are drawn in Section 5.

2. Meshfree approximation
2.1. Moving Least Squares approximation

The Moving Least Squares (MLS) approximation [2,3] is used to
construct the shape function in the EFG method. Let u be a function
defined on a domain @, and let the domain @ be discretized by a set
of points {X;}}f; Q. The MLS approximation of the function u(X),
denoted by u”(X), is

u"(X) = Zn:bjhj(X) = h" (x)p!" 1)
j=1

where h!"” (X) = (1,X,Y,Z,X2, ~~~,Z”)T is the vector of a monomial
basis in the coordinates XT = [X,Y,Z] so that the basis is complete
and n is the order of the monomial. The coefficients
bj, j = 1,2,---,n are solved by minimizing the following weighted,
discrete L, norm:

NP

" 2
E(bj) = Z(pa(xxl)<zbjhj(x1) “(X1)> (2)
=1

I=1

@, (X — X)) is a weight function which associates to each point and
has a compact support ‘a’. When 9E(b;) /db; = 0, the coefficients b;
are solved as

NP

bX) = 7 da(X — XM (X)h" (X u(X)); 3)
I=1
NP

MIUX) = S0, (X - X)) h" (X)) " (X)) (4)
J=1

assuming M (X) is non-singular. For the case n = 1, a sufficient
condition for a non-singular MIU(X) is that X for XeQ is at least
covered by the supports of four weight functions
Da(X - X)), ] = 1,2,3,4, where X;, Xy, X3 and X4 are not on the
same plane in the three dimensional problem. Substituting Eq. (3)
into Eq. (1), we have the MLS interpolant expressed as
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u'(X) = S XX - XpuX)) (5)
I=1

P X —X;) = @a(X — Xph"T x)yM"-1(x)hl" (X)) (6)

where lI/}"] (X; X — X)) is the MLS shape function.

Fig. 2 is an example of a MLS shape function constructed using
a cubic B-spline weight function and a linear basis. The employ-
ment of the MLS shape functions in the Galerkin approximation of
a partial differential equation is called the EFG method.

Notice that 'I’E"] (X;X — X)) in Eq. (6) is generally not an inter-
polation function, that is, the MLS shape functions do not have
Kronecker delta properties and u"(X;) may not be equal to u(X;) in
Eq. (5). Each u"(X;) is calculated from the coefficients
u(X;), I = 1,2,---,NP using Eq. (5), which is more cumbersome
compared to the finite element method. Because of this lack of
Kronecker delta property, special treatments are necessary in
enforcing essential boundary conditions when the MLS shape
functions are used to approximate boundary value problems [14].
Also, the resulting stiffness matrix for the linear system of algebraic
equation after these treatments is usually neither banded nor
sparse; therefore the solution of the linear system becomes
expensive. This is especially obvious in an implicit computation.

KP
> oMX)dy;
L=1
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3. Coupled meshfree/finite element method

The purpose of coupling the meshfree method and the FE
method is to keep the computational cost due to the meshfree
modeling low so that the problems can be solved at a cost as low as
possible. Fig. 3 illustrates the main concept of this coupling. The
problem domain Q is divided into FE sub-domains and meshfree
sub-domains, that is, Q = Qpgy UL pegpfree- The FE sub-domains
consist of non-overlapping and conforming elements. The mesh-
free sub-domains are discretized into sets of points associated by
compact weight functions. For the simplicity of illustration, in the
following derivation, we assume there is only one meshfree domain
and one FE domain.

3.1. Coupled meshfree/finite element approximation

In the coupled model, the finite element approximation remains
in the finite element sub-domains. The meshfree approximation is
so constructed in the meshfree sub-domains that the continuity of
the approximation remains across the interface between the finite
element and meshfree sub-domains or across the interface
between any two meshfree sub-domains. The function u(X) with
XeQ and Q = Qpgy U Qyenfee 1s approximated by

VXe ‘QFEM

Xre QM
NP MP MP
n] [m] (m]
By >OVIEXX-X)|d - X o (Xpdy| + > o7 (X)d,
u'(X) = 1 =1 [ 7= J ] L =1 (7)
Xje 'Qmeshfree Xiel' Interface Xiel Interface
NP m
= | > ; 7{’, (x)dﬁ VXe 'Qmeshfree
Xi€ Qineshfee
a b

: B =3 /§K_\ \
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Fig. 2. Example of meshfree discretization and shape function. (a) Meshfree discretization. (b) Meshfree shape function.
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Fig. 3. Example of a coupled meshfree/finite element model.

In Eq. (7), @; is the regular finite element shape function and KP
is the total number of nodes per element. Also,
T'interface = QrEM N @ meshfrees NP is the total number of meshfree
points, and MP is the total number of the finite element nodes
which are on the interface and whose supports cover point X.
lIf}"] (X) is the coupled meshfree/FE shape function. In order to keep
the approximation near the interface to be close to the original
meshfree approximation, MP in Eq. (7) only involves the nodes
along the interface instead of an ‘element’ in the meshfree domain.
Therefore, lI’}"] (X) will degenerate to the conventional Moving
Least Squares approximation if X is not within the domain of
influence from any interface nodes. Later on, this coupling tech-
nique is going to be extended to the imposition of essential
boundary conditions and contact surfaces to maintain the meshfree
nature in the computation. When the finite element interpolation
order m is equal to the reproducing order n, it can be proved that

interface

T T T

O Nadal Position

-A- Node 1 shape function
-B- Node 2 shape function
-C- Node 3 shape function

Shape Function

Node 2 Node 3 Node 4 | Node 5

Node |

Position

Fig. 4. One dimensional shape functions near the interface for the proposed method.

’f/,(X) = 0 for all nodes {I: support(llf[)ﬂflmerfaceato}
and Xe I'peerface (8)

Eq. (8) is called the interface constraint, i.e. the MLS shape function
of all internal points becomes zero when being evaluated at the
interface. If the interface constraint is satisfied, the resulting solu-
tion approximation of Eq. (7) becomes

MP
= >
J=1
X] € INpeerface
1, 2and 3 (9)

u O (X)dy VXe lnerface for i

In other words, the shape functions on the interface are reduced to
the standard finite element shape functions and possess the Kro-
necker delta property. Therefore, there are no conforming problems
for the shape functions across the interface.

The proposed method can be considered as one of the ‘compat-
ibility coupling’ methods [18]. Compared to the other existing
coupling methods, the proposed method does not require the
introduction of ramp functions, Lagrange multipliers, bridging
domain, or any special treatment such as the use of visibility crite-
rion in the hybrid approximation. The proposed coupling method
avoids the finite-element-like approximation near the interfaces
and boundaries in the meshfree domain since the domain influences
of interface and boundary nodes are controlled by the support size of
interface and boundary nodes as shown in Fig. 4. The extension of
this coupling technique to the imposition of essential boundary
condition in meshfree domain can also be directly applied. It will be
proved later in this paper that the proposed coupling method will
satisfy the patch test when two integration constraints are met in
the domain integration. Those special properties make the proposed
coupling method attractive in the large-scale computation such as
the crashworthiness simulation. However, the major disadvantage
of this method is the identification of problematic area to be
replaced by the meshfree approximation and the requirement of
extra pre-processing time to single out the problematic area within
a part, which may be troublesome in the full car simulation. For
simplicity, it is suggested to replace the whole problematic part from
the FEM model by the meshfree formulation. Fortunately, this is very
easy to be done in LS-DYNA input card and that requires no pre- and
post-processing time.

A one-dimensional example is presented in Fig. 4 to demon-
strate how the proposed shape function near the interfaces meets
the Kronecker delta property. It is noted that the gradient of the
shape function is discontinuous across the interfaces and bound-
aries, which means in the proposed coupling approach the strain
field is discontinuous within an element size from the interfaces
and boundaries.

3.2. Coupled meshfree/finite element method for explicit
dynamic simulation

Having the coupled meshfree/FE shape functions constructed,
we now can use them to solve dynamic problems. A Lagrangian
kernel function introduced by Chen et al. [5] for large deformation
problems is employed. In this approach, the kernel functions are
evaluated using the distance of material particles at the unde-
formed configuration. Consider a body initially occupying a domain
Qx and deforming into a configuration with domain Qx, where the
material behavior is described by tracing the same material point at
any time t, X = ¢;(X), throughout the history of the deformation.
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The motion and deformation of the body is governed by the
following equilibrium equations:

pll = V'U—fb in .Qx, Qx = 'QFEMU'Qmeshfree (10)

with prescribed boundary conditions and given initial conditions:

u=gonlyg
{c-n =honTl} an

{u(x, 0) = u’(X) (12)
u(X,0) = a®(X)

In Eq. (10), p is the mass density and f;, is the body force. The
solution of this set of governing equations can be constructed in the
framework of Galerkin weighted residual method with the coupled
meshfree/finite element approximation for the unknown variable
and the test function. The test function is designed to be du(X)e Qy,
Qo = {0u| due C°(X), du = 0 on I'g}, then the corresponding weak
form in an updated Lagrangian formulation is

/pau-ﬁdg - /6u-V-GdQ— /6u-fbdQ—/6u-hdF.

x

(13)

The discretization is achieved by applying Eq. (7) in the approxi-
mation of éu and u. In the explicit time integration, the final form of
the equations is

oUT™MU = 6U'R, (14)

where U is the generalized displacement vector whose values are
not the nodal displacements due to the non-Kronecker delta
property of the EFG shape functions. Similarly, M is generalized
mass matrix and R is the generalized residual force vector. Their
definitions are

u=[dl a} - db]"
d; = [dyy dy d3]"

My — / P10 T (x)dQ = / POU (X)W (X)dQ

R — / B (x)5dC — [, (x)h]

/ W, (x)f,dQ (15)

B (x) is the standard gradient matrix and IP is the total number of
discrete points and nodes in the domain. To introduce the mesh-
free Lagrangian shape function into the approximation of an
updated Lagrangian formulation, the strain increment is obtained
using the chain rule as 4du;; = AF,kF 1 and is used in the forma-
tion of gradient matrix. The stable crltlcal time step follows the
Courant-Friedrichs-Lewy stability condition [22]. The nodal
displacement vector U is related to the generalized displacement
vector U by

U = AUand A = ¥;(X)) (16)

and for the mass matrix and residual force we have

M=ATMA (17)

R=ATR (18)

3.2.1. Meshfree domain integration

The numerical integration in Eq. (15) is evaluated by the
modified Stabilized Conforming Nodal Integration method (SCNI)
in the meshfree domain. The original Stabilized Conforming Nodal
Integration method [15] has been developed to meet the integra-
tion constraint:

/ B/dQ = 0 for all interior nodes {I: Xj&lg} (19)
Qx

or in its discrete form,

NP
> VW (X)W = 0 for all interior nodes {I: X;&Ig}  (20)
=

where W; is the weight of the domain integration point which is
evaluated at the node and can be obtained from the Voronoi
diagram in the SCNI method [15].

This constraint can be derived with the consideration of
a Dirichlet boundary value problem with a linear displacement
field. When the shape functions have the Kronecker delta property,
the internal force which should be zero at an interior node is
calculated by [y B! 6dQ. Since the stress o is constant for a linear
displacement field, consequently [ B/ dQ has to be zero to have
the exact solution of the Dirichlet boundary value problem. Here
we call this the first integration constraint considering there is
another constraint to be followed next. The derivative of shape
function Vv;¥;(X;) in Eq. (20) is computed by applying the strain
smoothing method and the divergence theorem to yield

V(X)) = /'rf,(x (Xydrl 21)

where I is the boundary of the representative domain of point J
and A; is the associated representative area.

In general the coupled shape functions defined in Eq. (7) do not
have Kronecker Delta property m the meshfree domain. The
internal force is calculated by (A ,] Jo, B] odQ in the meshfree
formulation. Using the first integration constraint in Eq. (19), we
have

T

interface

Fig. 5. Strain smoothing of X; by modified local boundary integration along I'.
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Fig. 6. The discrete model for the patch test.

/ B 6d0 — / B] 6d0

for {I: Xleéfg} and {]g X, efg}

Fmt _
(22)

To have FiM

requnres

in Eq. (22) to be zero at node I for {I: X;& g}, it

,T)U/B};ch:0for{1:xlerg}and{1g:xjgerg} (23)
g

We call Eq. (23) the second integration constraint. One way to satisfy
this constraint is to apply finite element shape functions only along
the essential boundaries instead of the background elements:

lf’[(x!) = 5[] for {I : Xlefg}. (24)

By doing so the two-dimensional finite element shape functions are
incorporated with the three-dimensional meshfree shape functions
along the essential boundaries and contact surfaces. In this way,
(AT )lJ in Eq. (23) becomes zero and hence F}“t becomes zero. The
same idea can also be applied to the coupling of FEM and meshfree
along the interfaces. Another benefit is that with
¥ (X)) = @(X;) = oy for all essential boundary nodes {J : Xjelg}
the transformation matrix is not needed for the essential boundary
treatment anymore. Combining Eq. (24) and Eq. (7), we have the
modified coupled meshfree/finite element shape function ¥ as

KP

> oM (X)dy;
L=1
Xre Qrem
NP mp
>ovlxx-xpld - Y oM xd)]
u"(X) = =1 J=1
X;eQ meshfree Xiel Interface
or Xpelg\
NP =)
= > v (X)dp;
I=1
XeQ meshfree

Table 1
Comparison of solutions of the patch test by the conventional meshfree method
using 4 by 4 Gauss integration rule and by the proposed methods.

Exact solution 4 by 4 Gauss Proposed method Proposed method
[up uy] integration without the with the second
second integration
integration constraints
constraint
4.00 4.00 4.09 3.97 4.00 4.00 4.00 4.00
+2% —1% 0.0% 0.0% 0.0% 0.0%
6.00 2.00 5.77 3.50 6.00 2.01 6.00 2.00
—4% +75%  +1% +1% 0.0% 0.0%
2.00 6.00 3.26 5.22 2.00 6.00 2.00 6.00
+63% —-13% -8% 0.0% 0.0% 0.0%
5.00 5.00 4.84 414 5.00 5.00 5.00 5.00
—3% -17%  -1% 0.0% 0.0% 0.0%

The first and second integration constraints together ensure the
coupled meshfree/FE formulation to pass a linear exactness test of
the Dirichlet boundary value problem.

The modified SCNI is equivalent to the two point Gauss inte-
gration with local boundary integration performed on each Gauss
point. It eliminates hourglass modes which are observed when the
original SCNI method is used. It also avoids the use of stabilization
force required in the nodal integration method [19]. The back-
ground connectivity taken directly from the original meshed model
is used. The strain smoothing stabilization originally proposed in
[15] is modified in this research as

Xg) = ng/n-uf‘df
Iy

where I'g is the boundary of the representative domain corre-
sponding to the integration point Xg; V is the smoothed or
modified gradient operator; and n is the normal to the boundary
line I'y. The smoothed or modified strain computed from Eq. (26) is
in a sense ‘averaged’ and assigned to the point Xg. The represen-
tative strain smoothing stabilization using the modified local
boundary integration is shown in Fig. 5, where the supports with
solid lines denote the supports of meshfree discrete points
contributing to the strain smoothing at Xg. This smoothed strain
obtained from the proposed local boundary integration scheme
satisfies the first integration constraint

/ BldQ —
Q

where B; is the modified gradient matrix with components
computed from Eq. (26).

(26)

0 for all interior nodes (27)

VvV Xe ‘QFEM

MP
+ >
L=1
Xiel Interface
or Xjelg

(X)d;
(25)

V Xe O meshfree
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VA

Fig. 7. (a) Problem description of a 3D cantilever beam. (b) Discretization of the
cantilever beam with the coupled meshfree/FE method.

To introduce the strain smoothing formulation of Eq. (27) into
the Galerkin approximation, a mixed variation principle based on
an assumed strain method is considered [15, 16], which is

/ pou-idQ — / 58 : 0dQ — / 6u-fbdQ—/ su-hdl  (28)
Qx Qx Qx Iy

where € is the assumed strain computed from Eq. (26).

For explicit time integration, a row-sum method is used for the
construction of the lumped mass. Recall the consistent mass matrix
in Eq. (15), and perform the row-sum method. The diagonalized
mass vector is obtained as

P
M S My = /pow,(x)qu](x)dQ = / P°V((X)dQ
]:1 QX J:] QX

(29)

Compared to the conventional meshfree method using Moving
Least Squares approximation, the proposed method yields the same

Z/g/;’,l’——z.
e .
@ 095 + o T =
£ .
] | @
§ “ Meshfree
2 08 +—— : ! : H B FEM |
e < Coupled
2-
=
= 085+ — - — e —
o
=
E L

n-a 4 + 4 + 4 + + =
2 s

0.75 — I f——t -

0.2 04 0.6 0.8 1 1.2

Number of Nodes (E+3)

Fig. 8. Comparisons of the h-convergence of the tip deflection solution with three
different methods.

Main Block

”a Cladding sheet

Bumper
block

Facing sheet

— Rigid barrier

Fig. 9. The description of an offset deformable barrier.

nodal lumped mass when the support of the node does not cover
the interface or boundary. When the nodal support covers any
interface or boundary, the resultant nodal lumped mass will be
different from the one obtained from the conventional meshfree
method using Moving Least Squares approximation. Since the
coupled meshfree and finite element shape functions satisfy at least
the first-order reproducing condition, the total sum of nodal lum-
ped mass will still satisfy the conservation of mass.
The resulting discrete matrix is given by

MUmP{y — gext _ gint (%M—,) (30)
where
1Y L /polﬁ,(X)dQ (31)
Ox
fine _ / B/ -6(F)dQ (32)
o
£ = —[,00m]| - / T, (%), dQ (33)
h
Qx

where F is the smoothed deformation gradient.

N
\

\ Single Wall
Double Wall

w

Fig. 10. Honeycomb structure and principal directions (after Zhou and Mayer [24]).
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FAST ODB BARRIER
Time = L]

Fig. 11. Problem description of the ODB test.

The numerical integration for f}m by the proposed local
boundary integration scheme is

NE nint
fi" = > > B/ (Xs)GT-0(F(Xg))J (Xe)Ag (34)
E=1g=1
where NE is the total number of elements within each sub-domain
gof nint in background mesh IE under the influence of node I. nint is
the number of the sub-domain per each background mesh. G7 is the
transform matrix of the inverse of the smoothed deformation
gradient from Eq. (27) for the usage of the Lagrangian kernel
function. For example, in two-dimensions,

Fi} _01 F5} _01
o 1B o B )
Fip Fyi Fp Fy

G' =

FAST ODB BARRIER
0

Time =

a

The Coupled Model

FAST ODB BARRIER
Time = 90.011

,Lx

Fig. 12. The ODB deformation from the conventional FE analysis.
4. Numerical examples

We have implemented the coupled meshfree/FE method into
LS-DYNA version 971 and its later versions for industrial applica-
tions. It is recommended that engineers should consider the
meshfree formulation for the parts which experience large defor-
mation and whose finite element formulations lead to negative
element volumes.

FAST ODB BARRIER

Time = 90.011

b

The Deformation

Fig. 13. The coupled meshfree/finite element ODB model and resulting deformation.
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Fig. 14. The response force histories in the ODB test (units: ms for time, MPa for force).

In this section, we will present the applications of the coupled
meshfree/FE method in automotive problems. Before we present
any practical applications, we will evaluate its performance in
a simple patch test and do a convergence study using a cantilever
beam problem.

4.1. Patch test

To evaluate the numerical performance by this new solution
approximation and integration scheme, the following Laplace

1
I

I o
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equation with Dirichlet boundary conditions is solved. The problem
statement is

v2u(x) = 0,inQ = (0, 9)x (0, 9) (36)

(37)

Fig. 6 shows the discrete model, which will be analyzed using the
meshfree method. A cubic spline function is employed as the
weight function. A support size of 7.2 is used in this study. This
value is chosen to cover enough points for the construction of shape
functions. Linear basis functions are used to construct the shape
functions. The exact solution for this problem is u(x;) = x; for
x;e O\ T. Table 1 gives the comparison of results and corre-
sponding errors using 4 by 4 Gauss quadrature rule and the
proposed method with or without the second integration
constraints. Table 1 shows that only the proposed method with the
second integration constraints imposed gives the exact solutions
for this problem. That means it passes the linear patch test and can
exactly reproduce a linear field. It is also noted that any support size
value greater than 7.2 will not affect the result in the patch test
using the proposed method when the second integration constraint
is imposed.

u(xy) = Xy, onI'y

4.2. Cantilever beam

In this example, a three-dimensional cantilever beam as shown
in Fig. 7a is analyzed to study the convergence and accuracy of the
proposed coupling method. The beam is fixed at one end and is
subjected to a parabolic traction at the other end. Since the beam is
relatively thin, a plane stress condition can be considered to yield
the analytical solution [23]. The following parameters are used for

Fig. 15. The finite element dummy side impact model. (a) The finite element model. (b) The deformation at t = 20 ms.
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Fig. 16. The coupled meshfree/FE side impact dummy model (a) The coupled meshfree/FE model. (b) The deformation at t = 60 ms.

this problem: Young’s modulus E = 1.0 GPa; Poisson’s ratio v = 0.3;
L=50mm; h =10 mm; b =1 mm. To model it using the coupled
meshfree/FE method, the beam is divided into two parts. The part
near the free end is modeled by the fully integrated FEM and the
other part is modeled by the meshfree method as shown in Fig. 7b.
Regular discretizations with 3 x 3 x 3 Gaussian quadrature were
used for two parts. Normalized support size being 1.5 was used for
the meshfree shape function computation.

The problem is also modeled by the FEM and the meshfree
method in order to compare the solutions of the three methods: the
FEM, the meshfree method and the coupled meshfree/FE method.
Fig. 8 shows the normalized tip displacement for different
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Fig. 17. The response curve comparison in the dummy component test (units: ms for
time, MPa for force).

refinements obtained from the three methods. The results show
that the solutions from the three methods converge to the analyt-
ical one as the models are refined. The meshfree method gives the
most accurate solution for the same discretization compared to the
other two methods. The performance of the proposed coupled
meshfree/FE method is between the FEM and the meshfree method
as expected. Since in the coupled model the meshfree method is
used in the part near the fixed end which exhibits most deforma-
tion, the result from the coupled meshfree/FE analysis is close to the
one obtained from the meshfree method.

4.3. Frontal Offset Deformable Barrier

A frontal Offset Deformable Barrier (ODB) is used in the Insur-
ance Institute for Highway Safety (ITHS) 40MPH Frontal Offset Crash
Test, European New Car Assessment Program (Euro NCAP)—64KPH
(40MPH) Frontal Offset Crash Test, and European Type Approval
Test—56KPH (35MPH) Frontal Offset Crash Test. As shown in Fig. 9,
the barrier is comprised of two elements: a fixed rigid barrier and
a deformable face. The deformable face consists of two aluminum
honeycomb blocks with aluminum covering. The honeycomb
blocks consist of many thin aluminum hexagonal cells which have
double thickness walls with adhesive in between. Fig. 10 illustrates
the structure of the honeycomb cell. The direction parallel to the
hexagonal cell prisms is referred as the axial direction. The main
block has a height of 650 mm, a width of 1000 mm and a depth of
450 mm (in the direction of honeycomb cell axis), and has crush
strength of 0.342 MPa [24] and nominal density of 28.6 kg/m>. It is
covered with aluminum cladding sheet at the top, bottom and rear
faces of block. The bumper element honeycomb has a height of
330 mm, a width of 1000 mm and a depth of 90 mm and has crush
strength of 1.711 MPa and nominal density of 82.6 kg/m>. Its rear
face is covered with an aluminum facing sheet. The parts are
bonded together by polyurethane adhesives.
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Fig. 18. The coupled meshfree/FE model of the IIHS frontal ODB impact problem.

In the discrete model, the rigid barrier is treated as a constrained
rigid body. The deformable face blocks are modeled by solid
elements with LS-DYNA material type 126, *“MAT_MODIFIED_HO-
NEYCOMB, and cladding and facing sheets are modeled by shell
elements with LS-DYNA material type 3, *MAT_PLASTIC_K-
INEMATIC. The detailed material properties of the honeycomb
blocks can be found in Zhou’s work [24]. For the aluminum sheet,
the mass density is 2.68E + 3 kg/m> with Young’s modulus being
70.0 GPa, Poisson ratio being 0.33, yield stress being 180 MPa and
tangent modulus being 550 MPa. In this testing, the barrier is
impacted by a rigid cylinder that is moving toward the barrier along

axial direction with initial velocity being 15 mm/ms, as shown in
Fig. 11. The FE analysis of this problem shows unrealistic defor-
mation when the cylinder pushes deepest into the barrier, shown in
Fig. 12, where some elements in the left upper corner of the block
exhibit excessive distortion.

To test the effectiveness of coupled meshfree/FE approach, the
brick elements in the left upper corner of the block switch to the
meshfree formulation, while the others remain their original FE
formulations, shown in Fig. 13a. The ratio of the meshfree Degrees
Of Freedom (DOFs) over the total DOFs in the model is 0.076:1.0.
Fig. 13b gives the deformation from the coupled meshfree/FE

il :I{:‘l

S

Fig. 19. Deformations from the coupled meshfree/FE analysis of the IIHS frontal ODB impact problem (a) Undeformed configuration at t = 0 ms. (b) Deformed configuration at

t=80ms.
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Fig. 20. The velocity histories of the left front rocker in the IIHS frontal ODB impact problem.

analysis. No excessive distortion at the upper corner of the block is
observed. Fig. 14 gives the comparison of response force histories
on the cylinder. The force curve from the FE analysis shows
a sudden noise at the time when the elements at the upper corner
of the block started to experience excessive deformation. The
numerical noise often leads to numerical instabilities and hence
fails analyses. In the coupled analysis, this discontinuity does not
exist. The ratio of the CPU time consumed by the coupled analysis
over one by the FE analysis is 1.12:1 in this test, where the coupled
analysis consumed 12% higher CPU than the finite element analysis.

4.4. European side impact dummy component test simulation

A European side impact dummy component test is simulated. As
shown in Fig. 15, the dummy is impacted from the left side by a door
panel. The original finite element model of the problem is shown in
Fig. 15a. The FE analysis showed excessive element deformation in
the upper rib foam of the dummy when the door panel pushed onto
the dummy, see Fig. 15b. Negative element volume occurred, led to
numerical instabilities and hence failed analyses right after
t = 20 ms. In the coupled meshfree/FE model, all three rib foams are
modeled by the meshfree solid formulation. The coupled meshfree/
FE analysis with this modification failed again due to the element
distortion in the dummy jacket. Further on, the dummy jacket is
modeled by the meshfree shell formulation. The coupled meshfree/
FE analysis is then successfully completed. Fig. 16a shows the
coupled meshfree/FE model and Fig. 16b shows its final deforma-
tion. In the model, the ratio of the meshfree DOFs over the total
DOFs in the model is 0.189:1.0.

Fig. 17 gives the comparison of the response force histories. The
force curve from the FE analysis climbs up quickly at the time when
the dummy starts to experience excessive deformation, which
often contributes to the numerical instabilities. In the FE analysis,
negative element volume occurs after this peak and the analysis
stops due to the numerical instability. In the coupled analysis, no
element distortion occurs and the analysis is completed. The
response curves from both analyses agree with each other very well

Table 2
Normalized CPU time comparison between the normal FE analysis and the coupled
meshfree/FE analysis.

Number of CPU’s 1 2 4 8
FEM 1.00 0.70 0.39 0.25
Coupled Meshfree/FEM 111 0.77 0.44 0.27

before the distortion occurs. The CPU consumed by the FE analysis
up to t =20 ms is 9083 s. For the coupled analysis, the simulation
runs up to t = 60 ms, and 50194 s is consumed. The normalized CPU
ratio between the FE analysis and the coupled analysis is about
1.0:2.0 in this testing.

4.5. Insurance Institute for Highway Safety frontal offset
deformable barrier impact

Insurance Institute for Highway Safety (IIHS) frontal offset
deformable barrier impact test is simulated. As shown in Fig. 18, the
ODB model is impacted by a vehicle at 40 MPH. For this problem the
original finite element analysis can run successfully. Here we use
the problem to see the robustness of this coupled meshfree/FE
method in simulating a full vehicle crash test. In the coupled
analysis, as shown in Fig. 16 the entire barrier is modeled by the
meshfree formulation with all the null shells removed. The null
shells are used in the original FE barrier model to wrap each solid
element so as to prevent negative element volume problems. They
are unnecessary in the meshfree model. The ratio of the meshfree
DOFs over the total DOFs in the model is 0.015:1.0. The coupled
meshfree/FE analysis is successfully completed. Fig. 19 shows the
final deformation, where the barrier is severely crushed. Fig. 20
plots the velocity histories of the left front rocker from the original
FE analysis, the coupled meshfree/FE analysis and the physical test.
It shows that the velocity curve calculated from the coupled anal-
ysis agrees very well with the test data. Table 2 gives the CPU time
comparison between the original FE simulations and the coupled
meshfree/FE simulations when various numbers of CPU are used.
The coupled method consumes slightly higher CPU time than the
original FEM.

5. Conclusions

This paper presents a newly developed coupled meshfree/finite
element analysis tool in LS-DYNA for the analysis of crash and
safety problems. The Element-Free Galerkin method was employed
in the meshfree formulation. An interface constraint was developed
to ensure the continuity of the approximation across the interfaces
between the meshfree and FE zones and between the meshfree and
meshfree zones. To satisfy linear exactness in the meshfree Galer-
kin approximation of the Dirichlet boundary value problems, two
integration constraints have been developed. A local boundary
integration scheme with the coupled meshfree/FE shape function
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has been developed to satisfy the two integration constraints, so as
to eliminate the possible hourglass mode and to reduce the
computation time on the imposition of essential boundary condi-
tions. A new lumping method for the mass matrix and body force
has been developed for the explicit dynamic computation. The
coupled meshfree/finite element method can pass the linear patch
test exactly. The convergence study shows that the solution from
the coupled method converges to the analytical one as the model is
refined. The rate of h-convergence of the coupled analysis is larger
than the FE analysis but smaller than the meshfree method.

Three problems that often encounter element distortion diffi-
culties were employed to study the performance of the coupled
method in dealing with large deformation. They are an offset
deformable barrier component test, a European side impact dummy
component test and an IIHS ODB impact test. All three testing
problems have showed that the coupled meshfree/finite element
models were numerically more stable in dealing with large defor-
mation than the finite element models. The increase in required
computer resource was limited when only the problematic area was
modeled by the meshfree formulation. The problematic area usually
is identified by the severe mesh distortion observed from the finite
element result. It is also worthwhile to spend this extra time to gain
the big savings in running multiple analyses in a trial-and-error
fashion to find a numerically stable solution. From the study we can
conclude that the coupled meshfree/FE method provides a robust
tool for simulating problems involving excessive material distortion.
It is especially true for the crashworthiness analyses which by
nature deal with severe crushing problems.
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