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SUMMARY

A nonlinear nodal-integrated meshfree Galerkin formulation based on recently proposed strain gradient stabi-
lization (SGS) method is developed for large deformation analysis of elastoplastic solids. The SGS is derived
from a decomposed smoothed displacement field and is introduced to the standard variational formulation
through the penalty method for the inelastic analysis. The associated strain gradient matrix is assembled by
a B-bar method for the volumetric locking control in elastoplastic materials. Each meshfree node contains
two coinciding integration points for the integration of weak form by the direct nodal integration scheme. As
a result, a nonlinear stabilized nodal integration method with dual nodal stress points is formulated, which
is free from stabilization control parameters and integration cells for meshfree computation. In the context
of extreme large deformation analysis, an adaptive anisotropic Lagrangian kernel approach is introduced to
the nonlinear SGS formulation. The resultant Lagrangian formulation is constantly updated over a period
of time on the new reference configuration to maintain the well-defined displacement gradients as well as
strain gradients in the Lagrangian computation. Several numerical benchmarks are studied to demonstrate
the effectiveness and accuracy of the proposed method in large deformation inelastic analyses. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thanks for the characteristics of discretization flexibility and customized approximation, meshfree
or particle methods have undergone extensive developments and led to widespread applications
in interdisciplinary sciences and engineering over the past two decades. In particular, significant
research efforts have been spent on the nodally integrated meshfree or particle methods because of
the conceptual simplicity and the reduced numerical restriction in modeling large deformation, mov-
ing discontinuity, and immersed problems in solid and structural applications [1–6]. Nevertheless,
the application of a direct nodal integration (DNI) scheme to the weak form of meshfree or particle
methods suffers from the presence of spurious or zero-energy modes [7] in many solid mechanics
problems. The presence of these undesired deformation modes in Galerkin-based meshfree meth-
ods is mainly caused by the rank instability in the integration of weak form by the central difference
formula from the DNI scheme. A number of linear and nonlinear stabilization methods have been
developed to suppress the unstable deformation modes caused by the DNI scheme.
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2 C. T. WU ET AL.

The Galerkin/least-squares stabilization approach developed by Beissel and Belytschko [7] is one
of the earliest stabilization methods for meshfree nodal integration method. This method belongs
to a type of residual stabilization in which a least-squares form of the residual is added into the
Lagrangian functional in a consistent manner. Although this method enables the solution of partial
differential equations without a need of background cells for integration, the optimal choice of the
stabilization control parameter remains an open question. The second type of stabilization methods
is the approach based on the physical stabilization technique [8]. In general, the physical stabiliza-
tion is obtained by the Taylor series expansion of the displacement gradient matrix up to certain
higher-order terms. These higher-order terms are introduced to nodal integration formulation for the
enhancement of the coercivity and provide the stabilization that is free of control parameters. Nev-
ertheless, a common feature of those physical stabilization methods [9, 10] is the requirement of
background cells for the numerical integration. Like the Galerkin/least-squares stabilization method,
most meshfree physical stabilization methods were developed for the linear analysis. On the other
hand, Chen et al. [1, 11] developed a stabilized conforming nodal integration (SCNI) method in
which a strain-smoothing scheme was introduced as a stabilization process for nodal integration.
To further stabilize the SCNI solution in nonlinear analysis, a modified SCNI method, which com-
bines the ‘stress points’ [12] technique and penalty approach, was introduced (Figure 2). Essentially,
the SCNI technique based on conforming approximations and compatible background cells in strain
smoothing suffers from the numerical difficulty when the deformation is beyond the applicability
of Lagrangian material description. For that reason, a stabilized nonconforming nodal integration
(SNNI) method was developed and adopted in extremely large deformation simulations [13–15].
The SNNI method releases the restrictive compatibility requirements in the SCNI method by intro-
ducing a semi-Lagrangian kernel [13] into the nonconforming integration cells [3]. This modification
makes the SNNI method independent of the choice of integration cells whose purpose is to provide
enough accuracy and stabilization in severe deformation analyses. Recent study has shown [16] that
additional accuracy and stabilization in the SNNI method can be achieved by the reduction of solu-
tion errors of PDEs from quadrature inaccuracy using the higher-order exactness integration [17]. An
alternative SCNI formulation was also developed by Wang and Li [18] for the stabilization and reg-
ularization of damage-induced strain localization solution [19]. This nodal integration formulation
was derived from the nonlocal meshfree methodology [20] using a two-level strain-smoothing pro-
cedure for the stabilization calculation. However, this method cannot preclude the use of background
cells for integration.

The meshfree nodal integration method based on background cells poses some significant chal-
lenges from both the mathematical formulation and the programming aspects in the simulation of
severe deformation problems. Most notably, the strain operator in this family must be invertible stable
and well defined in the large deformation analysis. From the best of authors’ knowledge, only limited
literatures have been published on the scope of purely nodal integration for the meshfree Galerkin
method in large deformation analysis. Wu et al. [21] developed the smoothed particle Galerkin (SPG)
method in which a smoothed displacement field is introduced to stabilize the meshfree Galerkin
nodal integration solution in large deformation and damage analyses. Recently, the displacement
smoothing technique in SPG method has been adopted in the SCNI method for the simulation of
concrete impact problems [22]. It was shown [23] that SPG method is closely related to the nonlo-
cal meshfree method [20] by means of strain regularization analysis. In order to recover the locality
of strain approximation for non-failure analysis, Wu et al. [23] has introduced a strain gradient sta-
bilization (SGS) scheme to the meshfree Galerkin nodal integration method. In their approach, the
strain gradients are derived based on the decomposed strain field from the displacement smoothing
in the SPG method. It leads to a penalty formulation with the penalty (stabilization) parameter com-
ing naturally from the enhanced strain field. The resultant stabilization formulation in [23] does not
require the background cells for the domain integration. Their linear analysis results indicate that the
norm of penalty error in the SGS method is close to an optimal convergence rate of O(h), where h
denotes the size of nodal spacing in discretization.

The goal of this paper is to obviate the inherent limitation of cell-based meshfree nodal integra-
tion method in the large deformation inelastic analysis. This is achieved by exploring the use of
the stabilization scheme in linear SGS method [23] with the well-known B-bar method [24] for the
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NONLINEAR STABILIZATION MESHFREE NODAL INTEGRATION METHOD 3

derivation of nonlinear nodal integration formulation in elastoplastic applications. The rest of paper
is organized as follows: In the next section, we provide an overview on the SGS method in the linear
elasticity analysis. In Section 3, we present a nonlinear version of SGS method for large deformation
inelastic analysis. Both quasi-static and explicit dynamic formulations are derived. The correspond-
ing discrete equations are given in the same section. Section 4 presents a nonlinear SGS formulation
based on an adaptive Lagrangian kernel approximation for the extremely large deformation analy-
sis. Several numerical examples are presented in Section 5 to illustrate the robustness and accuracy
of the method. Final remarks are drawn in Section 6.

2. OVERVIEW ON THE STRAIN GRADIENT STABILIZATION FORMULATION IN
LINEAR ELASTICITY

Following the work in [23], the SGS method for linear elastic analysis is formulated by the penalty
approach through the introduction of a penalty term associated with an enhanced strain field to the
standard functional:

Π(u) = arg min
u∈H1(𝛺0)

[
Π(u) + 1

2 ∫
𝛺0

(
Θ(𝜺(u)) − 𝜺(u)

)T
∶ C ∶

(
Θ(𝜺(u)) − 𝜺(u)

)
d𝛺

]
(1)

subject to

u = ug on Γg (2)

where u is the displacement field, C is the elasticity tensor, 𝛺0 ⊂ R2 is a bounded polygon with
the smoothed boundary 𝜕𝛺0, ug is the imposed displacement on the essential boundary Γg, Π(u)
stands for the standard functional in linear elasticity, and the term

(
𝚯 (𝜺(u)) − 𝜺(u)

)
represents the

enhanced strain field that provides the stabilization effect in the nodal integration method. 𝚯(𝜺(u))
denotes the stabilized strain that is defined by [23]

𝚯(𝜺(u)) ≡ 𝛁u + 𝛁
(2)

u = 𝜺(u) + 𝛁
(2)

u (3)

The stabilized strain in Equation (3) consists of the regular strain field 𝜺(u) = 𝛁u and the enhanced

strain field 𝛁
(2)

u. The notation 𝛁
(2)

is a second-order gradient operator defined by [23]

𝛁
(2)

u ≡ 1
2

(
𝛁𝜼 ∶ u𝛁(2) +

(
𝛁𝜼 ∶ u𝛁(2))T

)
(4)

or in index form [
𝛁
(2)

u
]

ij
= 1

2

(
𝜂kl,ium,nj𝛿lm𝛿kn + uk,li𝜂mn,j𝛿km𝛿ln

)
(5)

where 𝛁(2) denotes the standard second-order gradient operator and 𝜼(X) is a tensor form of position-
dependent coefficients defined by [23]

𝜼(X) ≡ 1
2! ∫𝛺0

�̃� (Y;X) (Y − X)(2) d𝛺 (6)

where �̃� is called the displacement smoothing function [23]. We first remark that |||𝜼 (XI

)||| ∝ h2,
which is proportional to a length squared. This implies that the usage of strain gradient opera-
tor Θ of Equation (3) in functional (1) will lead to a point-wise truncation error of O(h2) in the
penalty term. This term is going to vanish as the discretization size h goes to 0. Secondly, no explicit
penalty/stabilization parameter is involved in functional (1). Indeed, the penalty form in functional
(1) can be viewed as a type of least-squares stabilization, where the h2 penalty parameter is imbed-
ded in the formulation and the residual of the penalty term is provided to stabilize the solution. In
linear elasticity, the enhanced stress field is written as

�̃� = C ∶
(
𝛁
(2)

u
)

(7)
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4 C. T. WU ET AL.

With the introduced enhanced strain field, the minimization problem of (1) leads to the following
stabilized discrete weak form by the nodal integration method, which only requires a space Uh for û:

ah (û, 𝛿û) = l (𝛿û) ∀𝛿û ∈ Uh
0 (8)

where

ah (û, 𝛿û) = ∫
𝛺0

𝛿(𝛁û)T ∶ C ∶ (𝛁û) d𝛺 + ∫
𝛺0

𝛿

(
𝛁
(2)

û
)T

∶ C ∶
(
𝛁
(2)

û
)

d𝛺

= ah
stan (û, 𝛿û) + ah

stab (û, 𝛿û)
(9)

l (𝛿û) = ∫
𝛺0

𝛿û ⋅ fd𝛺 + ∫ΓN

𝛿û ⋅ tdΓ (10)

Here, f is the body force; t is the traction applied on the Neumann boundary ΓN . The space Uh
0

consists of functions in the Sobolev space H1 (𝛺0
)

that vanishes on the boundary in the sense of
traces. The notation ah

stan in Equation (9) denotes the standard bilinear form. The stabilized bilinear
form ah

stab is defined by

ah
stab (û, 𝛿û) = ∫

𝛺0

𝛿

(
Θ

h
(𝜺 (û)) − 𝜺 (û)

)T

∶ C ∶
(
Θ

h
(𝜺 (û)) − 𝜺 (û)

)
d𝛺

= ∫
𝛺0

𝛿

(
∇

(2)
û
)T

∶ C ∶
(
∇

(2)
û
)

d𝛺
(11)

where Θ
h

is the discrete analogue of Θ. The previous stabilization term is added into the standard
bilinear term to enhance the coercivity of the formulation in the nodal integration method. The final
discrete equations for the linear elasticity analysis are summarized in the following:

Figure 1. Illustration of a neighbor particle reconstruction step for the computation of deformation gradient
in nonlinear SGS method.
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NONLINEAR STABILIZATION MESHFREE NODAL INTEGRATION METHOD 5

(
K + K̃

)
Ũ = f ext (12)

KIJ =
NP∑

K=1

BT
I

(
XK

)
CBJ

(
XK

)
V0

K (13)

K̃IJ =
NP∑

K=1

B̃
T
I

(
XK

)
CB̃J

(
XK

)
V0

K (14)

f ext
I =

NP∑
K=1

𝛹I

(
XK

)
f
(
XK

)
V0

K +
NB∑

K=1

𝛹I

(
XK

)
t
(
XK

)
LK (15)

BI(X) =
⎡⎢⎢⎢⎣

𝜕𝛹I (X)
𝜕X

0
𝜕𝛹I (X)
𝜕𝐘

𝜕𝛹I (X)
𝜕X

0 𝜕𝛹I (X)
𝜕Y

⎤⎥⎥⎥⎦ (16)

B̃I(X) =
⎡⎢⎢⎣

b̃I11 b̃I12
b̃I21 b̃I22
b̃I31 b̃I32

⎤⎥⎥⎦ (17)

Figure 2. Ellipsoidal nodal support in adaptive anisotropic Lagrangian kernel approach.

Figure 3. A simple tension test model.
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6 C. T. WU ET AL.

where vector Ũ =
[

ũ1 ũ2 ⋯ ũNP

]
contains the problem unknowns for generalized nodal displace-

ments [25, 26]. NP denotes the total number of meshfree nodes in discretization. V0
I stands for the

volume of node I. NB denotes the number of boundary nodes, and Lk is the length associated with the

boundary node along the global boundary. The meshfree shape function 𝛹 in Equation (16) and the

displacement smoothing function �̃� in Equation (6) are considered to be the same as those in [23].
They are constructed using the first-order meshfree convex approximation by generalized meshfree

approximation method (see [25] for detailed mathematical derivation and [27–29] for formulations
in solid mechanics applications). Meshfree convex approximation possesses the Kronecker-delta

property [30] at the boundary and therefore avoids special numerical treatments to enforce the essen-

tial boundary condition in general solid mechanics applications. The coefficients in the strain gradient

matrix of Equation (17) can be found in [23] and thus are omitted in this paper.

(a) (b)

Figure 4. Reaction force response with different uniform discretization in quasi-static analysis. (a) direct
nodal integration method and (b) present method.

Figure 5. The deformation of direct nodal method with different uniform discretization at d = 1.0 in quasi-
static analysis. (a) 231 nodes; (b ) 496 nodes; and (c) 861 nodes.
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3. STRAIN GRADIENT STABILIZATION FORMULATION FOR INELASTIC ANALYSIS

The stabilized discrete weak form for linear elasticity in Equation (8) is extended to cover the non-
linear cases through an updated Lagrangian formulation with reference to the current configuration
in the inelastic analysis:

𝛿Π = ∫
𝛺

𝛿 (𝛁û)T ∶ 𝝈d𝛺 + ∫
𝛺

𝛿

(
𝛁
(2)

û
)T

∶ �̃�d𝛺 − lext (18)

where 𝝈 is the regular Cauchy stress and �̃� is the enhanced stress field. Note that both stress quantities
are defined at the current configuration 𝛺. lext corresponds to the nonlinear version of external work
in Equation (8). Similar to most finite element stabilization methods in nonlinear solid and structural
analysis [31], the enhanced stress field in inelasticity is obtained by replacing the elastic tensor C in
Equation (7) with a material response tensor (elastoplastic tangent modulus) C𝜎 as

�̃� = C𝜎 ∶
(
𝛁
(2)

û
)

(19)

The linearization of Equation (18) with a neglect of nonlinear contribution in the enhanced strain
field yields

Δ𝛿Π = ∫
𝛺

𝛿 (𝛁û)T ∶ (C𝜎 + T𝜎) ∶ Δ (𝛁û) d𝛺 + ∫
𝛺

𝛿

(
𝛁
(2)

û
)T

∶ C𝜎 ∶ Δ
(
𝛁
(2)

û
)

d𝛺 −Δlext (20)

Figure 6. The deformation of present method with different uniform discretization at d = 1.0 in quasi-static
analysis. (a) 231 nodes; (b) 496 nodes; and (c) 861 nodes.

Figure 7. Comparison of effective plastic strain with 861 nodes model. (a) direct nodal integration method
and (b) present method.
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8 C. T. WU ET AL.

where T𝜎 is the regular geometric response tensor that is given by

T𝜎
ijkl = 𝛿ik𝜎jl (21)

Considering that the Lagrangian meshfree shape function 𝛹 0
I = 𝛹I (X) [26, 32] and the gradients

of displacement and strain approximations that are defined in the undeformed configuration, the vari-
ational equation of Equation (20) is transformed from the current configuration 𝛺 to the undeformed
configuration 𝛺0 as

Δ𝛿Π = ∫
𝛺0

𝛿
(
F−1𝛁0û

)T ∶ (C𝜎 + T𝜎) ∶ Δ
(
F−1𝛁0û

)
J0d𝛺

+ ∫
𝛺0

𝛿

(
F−1𝛁

(2)0
û
)T

∶ C𝜎 ∶ Δ
(

F−1𝛁
(2)0

û
)

J0d𝛺 − Δlext

(22)

where

Figure 8. Reaction force response with different nonuniform discretization in quasi-static analysis. (a) direct
nodal integration method and (b) present method.

Figure 9. The deformation of direct nodal integration method with different nonuniform discretization in
quasi-static analysis. (a) 231 nodes (at d = 1.0); (b) 496 nodes (at d = 0.33); and (c) 861 nodes (at d = 0.68).
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NONLINEAR STABILIZATION MESHFREE NODAL INTEGRATION METHOD 9

[
𝛁0û

]
ij
=

𝜕ûi

𝜕Xj
(23)

[
𝛁
(2)0

û
]

ij

= 1
2

(
2∑

k=1

2∑
l=1

𝝏𝜂kl

𝝏Xi

𝝏2ûl

𝝏Xk𝝏Xj
+

2∑
k=1

2∑
l=1

𝝏2ûl

𝝏Xi𝝏Xk

𝝏𝜂lk

𝝏Xj

)
(24)

ûi =
NP∑
I=1

𝛹 0
I ũi, i = 1, 2 (25)

Fij =
𝝏xi

𝝏Xj
is the deformation gradient, which is obtained using the DNI scheme. J0 is the determinant

of the deformation gradient. The introduction of meshfree convex approximation in Equation (25)
into Equation (22) results in the following incremental discrete equation for the evaluation of nodal
displacements: (

KM +KG +K̃
dev

)v

n+1

(
ΔŨ

)
v+1
n+1 = Rv

n+1 (26)

where all the functions are computed in the vth iteration during the (n + 1)th time incremental step.
KM and KG are corresponding regular stiffness matrices for material and geometrical nonlinearity,

Figure 10. The deformation of present method with different nonuniform discretization at d = 1.0 in quasi-
static analysis. (a) 231 nodes; (b) 496 nodes; and (c) 861 nodes.

Figure 11. Comparison of effective plastic strain of present method with 861 nodes model at d = 1.0 in
quasi-static analysis. (a) uniform discretization and (b) nonuniform discretization.
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10 C. T. WU ET AL.

respectively. The explicit expression of those two stiffness matrices can be found elsewhere in text-
books and literatures [26, 33]; therefore, it is omitted here. Because plasticity for either small or
large deformation is based on nearly incompressible material behavior, only the deviatoric part of
the strain gradient matrix is considered for the stabilization calculation in inelastic problems. This is
similar to the B-bar approach [24] for the volumetric locking control in nearly incompressible mate-
rials. The modified stabilized stiffness counterpart K̃

dev
IJ using the B-bar method and DNI scheme can

be expressed by

K̃
dev
IJ = ∫

𝛺0

̃̃BdevT

I C𝜎 ̃̃Bdev
J J0d𝛺

DNI=
NP∑

K=1

̃̃BdevT

I

(
XK

)
C𝜎 ̃̃B

dev

J

(
XK

)
J0

(
XK

)
V0

K (27)

where the modified strain gradient matrix ̃̃Bdev
I is given by

̃̃Bdev
I (X) =

⎡⎢⎢⎣
̃̃bI11

̃̃bI12
̃̃bI21

̃̃bI22
̃̃bI31

̃̃bI32

⎤⎥⎥⎦ (28)

Figure 12. Reaction force response with different uniform discretization in explicit dynamic analysis.
(a) direct nodal integration method and (b) present method.

Figure 13. The deformation of direct nodal integration method with different uniform discretization at d =
1.0 in explicit dynamic analysis. (a) 231 nodes; (b) 496 nodes; and (c) 861 nodes.
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with its components

̃̃bI11 = F−1
11

(
b̃I11 − b̃Iv1

)
+ F−1

12

(
b̃I12 − b̃Iv2

)
(29)

̃̃bI12 = F−1
21

(
b̃I11 − b̃Iv1

)
+ F−1

22

(
b̃I12 − b̃Iv2

)
(30)

̃̃bI21 = F−1
11 b̃I21 + F−1

12 b̃I22 (31)

̃̃bI22 = F−1
21 b̃I21 + F−1

22 b̃I22 (32)

̃̃bI31 = F−1
11

(
b̃I31 − b̃Iv1

)
+ F−1

12

(
b̃I32 − b̃Iv2

)
(33)

̃̃bI32 = F−1
21

(
b̃I31 − b̃Iv1

)
+ F−1

22

(
b̃I32 − b̃Iv2

)
(34)

b̃Iv1 =
(
b̃I11 + b̃I31

)
3

(35)

b̃Iv2 =
(
b̃I12 + b̃I32

)
3

(36)

Finally, the residual term along with the stabilized internal force term are expressed in a
conventional way by

R = f ext − f int − f̃
stab

(37)

Figure 14. The deformation of present method with different uniform discretization at d = 1.0 in explicit
dynamic analysis. (a) 231 nodes; (b) 496 nodes; and (c) 861 nodes.
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where f ext and f int are regular external force vector and internal force vector [26, 33], respectively.
The stabilized force vector is computed by DNI scheme as

f̃
stab
I = ∫

𝛺0

̃̃BdevT

I �̃�J0d𝛺
DNI
=

NP∑
K=1

̃̃BdevT

I

(
XK

)
�̃�
(
XK

)
J0 V0

K (38)

where �̃�T =
(
�̃�11, �̃�12, �̃�22

)
is a vector containing the component of Cauchy stress associated with

the stabilization and is updated by

�̃�n+1 = �̃�n+Δ�̃�n+1 = �̃�n+ (C𝜎)n+1

(
̃̃Bdev

)
n+1

ΔŨn+1 (39)

In other words, each meshfree node in the present stabilized meshfree nodal integration method
carries two stress points, one for regular nodal stress 𝝈 and the other for the enhanced nodal stress
�̃�. This dual stress point integration scheme is different from existing meshfree nodal integration

Figure 15. Reaction force response with different nonuniform discretization in explicit dynamic analysis. (a)
direct nodal integration method and (b) present method.

Figure 16. The deformation of direct nodal integration method with different nonuniform discretization in
explicit dynamic analysis. (a) 231 nodes (at d = 0.7); (b) 496 nodes (at d = 0.7); and (c) 861 nodes (at

d = 0.6).
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schemes based on the physical stabilization technique [9, 10] where background cells and multiple
stress points are usually needed for the stabilization calculation.

Subsequently, the discrete equations for explicit dynamic analysis can also be obtained by

Ma = f ext − f int − f̃
stab

(40)

MI =
NP∑

K=1

𝜌0𝛹I

(
XK

)
V0

KI[2×2] (41)

where MI is the lumped nodal mass matrix and 𝜌0 is the initial material density. In the explicit
dynamics analysis, the numerical evaluation of stabilized force vector using Equation (39) is compu-
tationally unfeasible because it involves the determination of elastoplastic tangent modulus at each
explicit time step. As suggested by Belytschko and Lee [34], the elastoplastic tangent modulus in
Equation (39) can be replaced by a modified shear modulus G̃ for the stabilized stress update, that is,

2G̃ =

√
HΔ𝜏

HΔe
(42)

where

HΔ𝜏 =
1
2

2∑
i=1

2∑
j=1

Δ𝜏ijΔ𝜏ij,HΔe =
1
2

2∑
i=1

2∑
i=1

ΔeijΔeij (43)

Δ𝜏ij andΔeij are components of the deviatoric part of the stress and strain increments, respectively,
which are obtained from the regular nodal stress and strain computation using the DNI scheme.
As a consequence, the incremental stabilized stress vector is computed in the explicit dynamic
analysis by

Δ�̃� ≈ 2G̃
(
̃̃Bdev

)
ΔŨ (44)

The critical time stepΔtc for the central difference time integration in the explicit dynamic analysis
is governed by the Courant–Friedrichs–Lewy condition. The eigenvalue inequality theorem [33, 35]
has been applied to the meshfree Galerkin method with first-order convex approximation [36] for the

Figure 17. The deformation of present method with different nonuniform discretization at d = 1.0 in explicit
dynamic analysis. (a) 231 nodes; (b) 496 nodes; and (c) 861 nodes.
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critical time step analysis. With the additional stabilization term, the critical time step is modified
to be

Δtc =
2√

max
I=1,NP

(
𝜆I
max

) (45)

𝜆I
max ⩽ c2 max

(
NP∑
J=1

𝛹 2
J,x

(
XI

)
+ 𝛬J

(
XI

)
𝛹J

(
XI

) ,

NP∑
J=1

𝛹 2
J,y

(
XI

)
+ 𝛬J

(
XI

)
𝛹J

(
XI

) )
(46)

𝛬J

(
XI

)
= ̃̃b2

J11

(
XI

)
+ ̃̃b2

J21

(
XI

)
+ ̃̃b2

J31

(
XI

)
+ ̃̃b2

J12

(
XI

)
+ ̃̃b2

J22

(
XI

)
+ ̃̃b2

J32

(
XI

)
(47)

where c is the material sound speed. The spatial derivatives of the Lagrangian shape function in
inequality (46) are computed using the chain rule given by

𝛹J,i (X) = 𝛹 0
J,i =

𝝏𝛹 0
J

𝝏xi
=

𝝏𝛹 0
J

𝝏Xj

𝝏Xj

𝝏xi
, i = 1, 2 (48)

The explicit dynamic analysis using Equation (45) gives a conservative estimation of critical time
step but the very stable results in the nodal integration method. A sharp estimation of critical time
step is not the goal in this paper but will be considered in the future. On the other hand, it is known
that the critical time step in the explicit dynamic analysis may drop significantly in the large defor-
mation simulation using the pure Lagrangian method because of the near singularity of the inverse of
deformation gradient in Equation (48). In meshfree methods, this numerical obstacle can be
sidestepped by an incorporation of adaptive Lagrangian kernel [13–15, 37] that is updated constantly
over a period of time in the simulation as described in the following section.

4. ADAPTIVE ANISOTROPIC LAGRANGIAN KERNEL FOR SEVERE
DEFORMATION ANALYSIS

Similar to most Lagrangian finite element and meshfree methods, the pure Lagrangian formulation
of present stabilized nodal integration method is unable to handle the severe deformation that is
beyond the applicability of Lagrangian material description. In other words, the determinant of the
deformation gradient could become J0 = det(F) < 0, which leads to a negative volume in the com-
putation and fails to advance the numerical simulation. One effective way to solve this numerical
problem is to reconstruct the regular displacement gradient matrix B and the stabilized strain gradient
matrix ̃̃Bdev constantly over a period of time on the new reference configuration. Similar technique of
reconstructing the neighbor particle information has already been adapted in other particle/meshfree
methods [13–15, 37] for the large deformation analysis. The main difference between the present
approach and existing techniques [13–15, 37] is an update of Lagrangian kernel based on the defor-
mation gradient from SGS formulation. We refer this numerical procedure as an adaptive anisotropic
Lagrangian kernel approach in this study.

Using the chain rule, the calculation for the deformation gradient can be written as

Fn+m = F
⌢

n+mFn (49)

where F
⌢ 𝐧+𝐦 (

x
⌢)

is the decomposed deformation gradient, from t = tn to tn+m, computed based on
the new reference configuration and is given by

F
⌢

𝐢𝐣
𝐧+m

(
XJ

)
=

𝝏x
⌢

i

𝝏X
⌢

j

=
NP∑
I=1

𝝏𝛹I

𝝏X
⌢

j

(
X
⌢

J

)
x
⌢

iI (50)
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Here, x
⌢ = X

⌢

+ ũ
(
X, tn+m

)
is a position vector defined in the new reference configuration

X
⌢

= x
(
X, tn

)
. Figure 1 illustrates a neighbor particle reconstruction step for the computation of

deformation/gradient at time t = tn+m in the present nonlinear SGS method. Because this particle-
based reconstruction step for the computation of deformation gradient does not involve remeshing as
that in the r/h-adaptive finite element methods, the remapping procedures that interpolate the internal
variables at the integration points from the old mesh to the new mesh are not necessary.

Considering the anisotropic deformation in large deformation inelastic analysis, an ellipsoidal
nodal support is used for the neighbor particle searching in each new reference configuration X

⌢

=
x
(
X, tn

)
. In two dimensions, a local X

⌢
I-coordinate system in which the axes are parallel to the global

Cartesian coordinates and with its origin located at X
⌢

I is defined for each meshfree node I. The

ellipsoid of each meshfree node I is defined by another local

⌢

⌢

XIX
⌢

-coordinate system formed by a
dyad of mutually perpendicular vectors hn

Ii, i = 1, 2, the semimajor axes of the ellipsoid as shown in
Figure 2.

The two-dimensional ellipsoidal cubic spline kernel function can be defined in the local

⌢

⌢

XI-
coordinate system by

𝜙

(
X
⌢

𝐉 − X
⌢

I

)
= 𝜙1

⎛⎜⎜⎜⎝
⌢

⌢

XI
J

hn
𝟏

⎞⎟⎟⎟⎠𝜙1

⎛⎜⎜⎜⎝
⌢

⌢

YI
J

hn
𝟐

⎞⎟⎟⎟⎠ (51)

where hn
1 = |||h𝐧𝐈𝟏||| and hn

2 = |||h𝐧𝐈𝟐||| are the semimajor axes of the ellipsoid.

⌢

⌢

XI
J and

⌢

⌢

YI
J are the projec-

tions of relative position vector X
⌢

J − X
⌢

I on the local

⌢

⌢

XI-coordinate system, respectively. 𝜙1 is the
standard one-dimensional cubic spline kernel function [26]. In general, we have h0

1 = h0
2 as a circular

shape cubic spline kernel function at t = 0. The circular shape domain of cubic spline kernel func-
tion deforms and rotates according to the Lagrangian motion between each two adaptive Lagrangian
kernel steps. In this study, the evolution of ellipsoid is determined by the right Cauchy–Green
deformation tensor

Gn =
(
Fn)T ⋅ Fn =

2∑
i=1

(
𝜆n

i

)2
ni ⊗ ni (52)

where 𝜆n
i , i = 1, 2 are two distinct principal stretches and ni =

[
nxi, nyi

]
, i = 1, 2 are the correspond-

ing eigenvectors. Therefore, the length and direction of the semi-axes of ellipsoid are estimated by
the eigenvalues and eigenvectors, respectively, of the matrix Gn. In other words, the eigenvalues of
Gn represent two principal stretches of the ellipsoid at t = tn. As a consequence, the semimajor axes
of the ellipsoid are approximated by

hn
1 = 𝜆n

1h0
1 and hn

2 = 𝜆n
2h0

2 (53)

and the vectors hn
Ii = hn

i ni = hn
i

[
nxi nyi

]
, i = 1, 2 are obtained. The gradients of the two-dimensional

ellipsoidal cubic spline kernel function needed in the computation of displacement gradient matrix
B and the stabilized strain gradient matrix ̃̃Bdev can also be evaluated by

𝛁⌢

X

(
𝜑

(⌢

XJ −
⌢

XI

))
i
=
(

hn
Ii

hn
i

)
⋅ 𝛁⌢

⌢

X

(
𝜑

(⌢

XJ −
⌢

XI

))

= nxi

𝜕𝜑1

⎛⎜⎜⎝
⌢
⌢

XI
J

hn
1

⎞⎟⎟⎠
𝜕

⌢

⌢

X

𝜑1

⎛⎜⎜⎜⎝
⌢

⌢

Y

I

J
hn

2

⎞⎟⎟⎟⎠ + nyi𝜑1

⎛⎜⎜⎜⎝
⌢

⌢

XI
J

hn
1

⎞⎟⎟⎟⎠
𝜕𝜑1

⎛⎜⎜⎝
⌢
⌢

Y I
J

hn
2

⎞⎟⎟⎠
𝜕

⌢

⌢

Y

, i = 1, 2

(54)
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5. NUMERICAL EXAMPLES

In this section, five benchmark examples are analyzed to study the performance of present stabiliza-
tion method in inelastic problems. Plain strain condition is assumed in two-dimensional problems.
Unless otherwise specified, a normalized nodal support size of 1.5 is used in the meshfree com-
putation. A dimensionless unit system is adopted in most examples for convenience. A standard
Newton–Raphson method is employed to solve the nonlinear equation (26). If the number of
iterations reaches the maximum number of 10, the execution of quasi-static analysis is terminated.

5.1. Tension test

In this example, the large deformation in a simple tension test is analyzed. The aluminum test spec-
imen with one end fixed and the other end subjected to a prescribed displacement is considered as
shown in Figure 3. The material has an initial density 𝜌0 = 2700. The strain-hardening elastic-plastic F3
material properties are as follows: Young’s modulus E = 69, 000.0, Poisson’s ratio v = 0.3, and an
isotropic hardening rule 𝜎y

(
ep) = 𝝈0

y

(
1 + 𝛼ep)𝛽 with coefficients 𝛽 = 0.216, 𝝈0

y = 80.5992, and
𝛼 = 10, 000.0. 𝝈y

(
ep) is the flow stress that is a scalar and increases monotonically with the effective

plastic strain. Three levels of model refinements are used, with 21× 11, 31× 16, and 41× 21 equally
spaced nodes. Alternatively, three corresponding nonuniform refinement models are also generated
for the test. Because the analytical solution of this problem is not available, a volumetric locking-
free solution obtained from the meshfree-enriched finite element method [27, 28] using the 41 × 21
uniform discretization model by quasi-static analysis is adopted as a reference for comparison.

5.1.1. Quasi-static analysis. The problem is first analyzed by the quasi-static analysis carried out
using 60 equal loading steps. The convergence of reaction force response is reported in Figure 4(a) F4
and (b) for the DNI method and the present method, respectively. Both nodal integration solutions
are comparable and agree very well with the reference solution. The final deformation plots for the
DNI method and the present method are given in Figures 5 and 6, respectively. Surprisingly, all F5

F6three deformation plots generated by the direct integration method do not display any spurious or
zero-energy modes. The results in Figures 4–6 indicate that the direct integration method is able to
produce a stable quasi-static solution under uniform discretization in the tension mode. The com-
parison of effective plastic strain in two 861 nodes models is shown Figure 7 that shows a good F7
agreement with each other. Overall, the difference between the DNI method and the present method Q1
is marginal in this test case.

The convergence study of reaction force response in nonuniform discretization is given in
Figure 8(a) and (b) for the direction nodal integration method and the present method, respectively. F8
The results in Figure 8(a) show that the direction nodal integration method is not monotonically con-
verged. Indeed, the final solution of DNI method never converges in the 496 nodes and 861 nodes
models. The divergence of the solution in nonuniform discretization can be attributed to the under-
integration nature of the direction nodal integration method. This phenomenon is consistent with

Figure 18. Comparison of effective plastic strain of present method with 861 nodes model at d = 1.0 in
explicit dynamic analysis. (a) uniform discretization and (b) nonuniform discretization.
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the softer force response observed in Figure 8(a) and is confirmed by the visible unstable modes
displayed in deformation plot shown in Figure 9. On the other hand, the reaction force solution of F9
the present method is more accurate than that of the direction nodal integration method as shown
in Figure 8(b). All implicit runs in three discretization models converge until the final stage with
the deformed plots provided in Figure 10. The comparable effective plastic strain contours in the F10
present solution using 861 nodes model are given in Figure 11(a) and (b) for the uniform and nonuni- F11
form discretization, respectively. The comparison results in Figures 8–11 suggest that the present
method is able to stabilize the direction nodal integration solution in this simple tension test using
the nonuniform discretization.

5.1.2. Explicit dynamics analysis. Superior performance of the present stabilization method over
the DNI method is also presented in the accuracy comparison by the explicit dynamic analysis. A
very low speed of displacement control is imposed on the test model to mimic the quasi-static state
in the explicit dynamic analysis. In the case of uniform discretization, the direction nodal integration
method behaves as well as that in the quasi-static analysis from the small to moderated deformation
stage as shown in Figure 12(a). However, the direction nodal integration method suffers from the F12
zero-energy modes in the large deformation range as shown in Figure 13. As a result, the method F13
produces the solution that is much softer than the reference solution. The poor performance in the
DNI method can be greatly improved by the present stabilization method. As shown in Figure 12(b),

Figure 19. Comparison of reaction force response in quasi-static analysis. (a) uniform discretization and (b)
nonuniform discretization.

Figure 20. Comparison of deformation with uniform discretization in quasi-static analysis. (a) direct nodal
integration (d = 0.98) and (b) present method (d = 1.0).
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the present stabilization solution matches the reference solution very well in all three discretization
models. No zero-energy modes are observed in the final deformation plots as shown in Figure 14, F14
and the deformation results are comparable with those obtained from the quasi-static analysis.

In the case of nonuniform discretization using the explicit dynamics analysis, the accuracy of
the DNI method decreases significantly. The force response in Figure 15(a) and the deformation F15
plots in Figure 16 present the noticeable errors in the DNI solution compared with those in the F16
uniform discretization model. On the other hand, the present stabilization method in the nonuniform
discretization predicts the force response that is as accurate as that in the uniform discretization.
The enhanced accuracy in the present method is also demonstrated in the stable deformation at the
final stage as depicted in Figure 17. Similar to the effective plastic strain distribution in the quasi- F17
static analysis, two results using the uniform and nonuniform discretization in the explicit dynamic
analysis are comparable as shown in Figure 18(a) and (b), respectively. Those accurate results of the F18
present method indicate the effectiveness of the proposed SGS in the inelastic analysis.

5.2. Compression test

The same discretization model containing 496 nodes in the previous tension test is utilized for the
compression test. Both the uniform and nonuniform discretization models are considered in this test.
The reference solution is obtained from the meshfree-enriched finite element method [27, 28] using
the uniform discretization model and quasi-static analysis for comparison. A total of 50 loading steps
are used for the quasi-static analysis.

Figure 21. Comparison of deformation with nonuniform discretization in quasi-static analysis. (a) direct
nodal integration method (d = 0.16) and (b) present method (d = 1.0).

Figure 22. Comparison of effective plastic strain of present method at d = 1.0 in quasi-static analysis.
(a) uniform discretization and (b) nonuniform discretization.
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5.2.1. Quasi-static analysis. The comparison of reaction force response is given in Figure 19(a) and F19
(b) for the uniform and nonuniform discretization, respectively. In the case of uniform discretiza-
tion, the DNI solution agrees well with the present solution before the DNI method diverges at the
compression displacement of 0.98. Compared with the uniform discretization solution, the nonuni-
form discretization solution of DNI method reacts overly soft and diverges much earlier as shown in
Figure 19(b). This numerical behavior is very similar to the one in the tension test and is a cause of
zero-energy modes in the DNI method. On the other hand, the present method consistently performs
well in terms of force response in Figure 19 and the deformation in Figures 20 and 21 for uniform F20 F21
and nonuniform discretization, respectively. The present method also gives a comparable result in
the effective plastic strain distribution as shown in Figure 22. F22

5.2.2. Explicit dynamic analysis. The reaction force results of uniform and nonuniform discretiza-
tion are given in Figure 23(a) and (b), respectively. In the case of explicit dynamics analysis using F23
the uniform discretization, the DNI method performs poorly in comparison with the results of quasi-
static analysis. As shown in Figure 23(a), a major numerical breakdown in the DNI method is caused
by the zero-energy modes as displayed in Figure 24(a) at the compression displacement of 0.8. The F24
use of nonuniform discretization in the DNI method is clearly less accurate and produces more unsta-
ble deformation modes as shown in Figures 23(b) and 25(a) for the reaction force response and the F25
final deformation, respectively. As opposed to the DNI method, the present method is able to deliver

Figure 23. Comparison of reaction force response in quasi-static analysis. (a) uniform discretization and (b)
nonuniform discretization.

Figure 24. Comparison of deformation with uniform discretization in explicit dynamic analysis. (a) direct
nodal integration (at d = 0.8) and (b) present method (at d = 1.0).
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Figure 25. Comparison of deformation with nonuniform discretization in explicit dynamic analysis. (a) direct
nodal integration integration (at d = 0.7) and (b) present method (at d = 1.0).

Figure 26. Comparison of effective plastic strain of present method at d = 1.0 in explicit dynamic analysis.
(a) uniform discretization and (b) nonuniform discretization.

an accurate result using either the uniform or the nonuniform discretization as shown Figure 23. The
final deformation plots displayed in Figures 24(b) and 25(b) show that the stable deformation modes
are achieved using the proposed SGS. The comparable results of the uniform or nonuniform dis-
cretization in the effective plastic strain distribution as shown in Figure 26 indicate the applicability F26
of the present method for the inelastic analysis in compression mode.

5.3. Severe deformation test

In this example, the compression in Example 5.2 is pushing much further for the severe deformation
study. Because the meshfree-enriched finite element method [27, 28] diverges at the compression
displacement of 1.02, the reference solution is not provided in this example. The DNI solution is also
not included for comparison because of the divergence of solution in the early stage as reported in
the previous example. Both quasi-static and explicit dynamics analyses with uniform discretization
are considered for this study. The approach of adaptive anisotropic Lagrangian kernel described in
Section 4 is employed in the proposed stabilization method to avoid the negative volume problem
in this severe deformation analysis. The anisotropic Lagrangian kernel is updated at each implicit
time step in the quasi-static analysis. A total of 100 constant time steps are utilized in the quasi-static
analysis to reach the final compression displacement at 2.0. In the explicit dynamics analysis, the
update of anisotropic Lagrangian kernel is carried out every 500 explicit time steps.

Figure 27 compares the reaction force response using the quasi-static and explicit dynamic anal- F27
yses. As shown in Figure 27, both analyses predict similar force responses. Figure 28(a) and (b) F28
presents the deformation history using the quasi-static and explicit dynamic analyses, respectively.
The results indicate that the present method is capable of modeling the severe deformation problem
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in this compression test. Figure 29 displays the effective plastic strain contour where the compara- F29
ble high gradient patterns are obtained. Figure 30 reports the percentage of volume change in the F30
compression test. Both analysis results generate a final volume change that is less than 1% in this
inelastic analysis.

5.4. Necking of a 3D bar

To demonstrate the applicability of present formulation in the general 3D problem, the necking of a
metal bar is tested. The 3D bar is 53.334 mm in length and 6.413 mm in radius. Similar to the simple

Figure 27. Comparison of force response in compression test.

Figure 28. Deformation history in severe deformation test. (a) quasi-static analysis and (b) explicit dynamic
analysis.
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(b) explicit dynamic analysis.

Figure 30. The percentage of volume change in compression test.

tension test in Example 5.1, one end of the specimen is fully constrained, and the other end is con-
strained and subjected to a displacement control to reflect the actual experimental test fixture [38]. In
order to simulate necking, a geometric imperfection is introduced by a linear reduction in radius along
the length, with radius at the center to be 98.2% of the radius at the end [26]. The material constants of
the metal bar are as follows [1, 26]: Young’s modulus E = 206.9 GPa, Poisson’s ratio v = 0.29, den-
sity 𝜌0 = 7860 kg/m3, and the isotropic hardening rule 𝝈y

(
ep) = 𝝈0

y +𝛼ep +
(
𝝈∞

y − 𝝈0
y

) (
1 − e−𝛽ep)

with coefficients 𝛽 = 16.93, 𝝈0
y = 0.45 GPa, 𝝈∞

y = 0.715 GPa and 𝛼 = 0.12924 GPa. Both finite
element method and present method are considered in the necking simulation using the explicit
dynamics analysis, and the results are compared with experimental data [38]. The finite element
analysis model is composed of 4200 hexahedra elements (4756 nodes) as shown in Figure 31. One- F31
point integration with hourglass control is adapted for the finite element analysis [39]. The same
discretization is used for the meshfree analysis based on the proposed formulation.

The deformed geometries are plotted in Figure 32 (a) and (b) for the finite element analysis and the F32
present method, respectively. Figure 33(a) presents the load–displacement response. In Figure 33(a), F33
the force result is normalized with the maximum load. Analogously, the displacement is normalized
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Figure 31. The finite element mesh of 3D bar in necking problem.

Figure 32. Deformed configuration of 3D bar in effective plastic strain contour. (a) finite element method
and (b) present method.

with a length of gauge L0 = 50.8 mm [26]. Both numerical results match very well before necking.
Although visible difference is observed in the load–displacement curve when the bar starts to have
necking, both finite element method and present method predict the results that are still compared
favorably with the experimental data [38]. The response of normalized neck radius is also investi-
gated. Good agreement between experimental data and the present meshfree solution is shown in
Figure 33(b).

5.5. 3D metal grooving simulation

This problem is studied to identify the applicability of the proposed formulation in 3D severe defor-
mation analysis. A metal block of size 0.1m × 0.06m × 0.02m is fixed at the bottom and grooved
by a rigid rotating roller as shown in Figure 34. The width of the roller is 0.008 m. The roller has F34
a constant rotating speed w = 125 rad/s and is traveling at a transverse speed V = 0.5 m/s. For
present purpose, we further assume that the grooving process is isothermal, and frictional coeffi-
cient for the contact between roller and work piece is 0.1. The material has an initial density of
𝜌0 = 2700 kg/m3. The strain-hardening elastic-plastic material properties are as follows: Young’s
modulus E = 70.0 GPa, Poisson’s ratio v = 0.3, and an isotropic hardening rule 𝝈y

(
ep) = 𝝈0

y+𝛾Epep

with coefficients 𝛾 = 1.0, 𝝈0
y = 0.1 GPa, and Ep = 1.5e − 2 GPa. The finite element analysis model

for the work piece contains 15,000 hexahedra elements (17,391 nodes) that are uniformly distributed
as shown in Figure 34. For finite element methods [39], both one-point integration with hourglass
control formulation (FEM1) and selective reduced integration formulation (FEM2) are considered
for the comparison. Explicit dynamics analysis is conducted for this simulation.
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Figure 33. Comparison with experimental data. (a) normalized load F∕Fmax and (b) normalized neck radius
a∕a0.

Figure 34. 3D metal grooving problem.

The final deformed geometries with effective plastic strain contours are plotted in Figure 35(a)–(c) F35

for the FEM2, FEM1, and the present method, respectively. As shown in Figure 35(a), FEM2 method
experiences severe mesh distortion problem, and the simulation stops in the early stage. Surprisingly,
the FEM1 method improves the simulation in FEM2 and completes two-thirds of the simulation
in grooving process as shown in Figure 35(b). On the other hand, the present method is able to
accomplish the grooving simulation as depicted in Figure 35(c) for the final deformed geometry. It
is worthwhile to note that the present method is very stable, and no shooting nodes are observed in
the simulation. The comparisons of contact force in vertical and longitudinal directions are given in
Figure 36(a) and (b), respectively. Good agreement between FEM1 solution and the present solu- F36

tion is shown in Figure 36 before FEM1 solution diverges. In contrast, the negative volume causes
the FEM2 simulation to abort early as shown in the contact force response. Figure 37 presents the F37

deformation history plotted in effective plastic contour using the present formulation.
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Figure 35. Final deformation in the grooving problem. (a) FEM2; (b) FEM1; and (c) present method.
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Figure 36. Comparison of contact force in the grooving problem. (a) vertical direction and (b) longitudinal
direction.

Figure 37. Deformation history in grooving simulation.

6. CONCLUSIONS

A purely nodal-integrated meshfree method is attractive from the viewpoint of formulation simplic-
ity and simulation capability in the nonlinear analysis of solid mechanics problems. In this paper, the
previous work of SGS method [22] for the linear elasticity analysis is generalized for the large defor-
mation inelastic analysis. A nonlinear SGS formulation with dual nodal stress points is presented that
is free from stabilization control parameters and integration cells for the meshfree computation. An
adaptive anisotropic Lagrangian kernel approach is incorporated into the nonlinear SGS formulation
to enhance the simulation capability for severe deformation analysis.

Our numerical results indicate that the present method is able to stabilize the meshfree DNI solu-
tion in the nonlinear analysis. It also has been demonstrated in the numerical examples that the
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present nonlinear stabilized nodal integration method with the adaptive anisotropic Lagrangian ker-
nel approach is capable of handling the severe deformation problem. One of the particular interests
in the present method will be to analyze the damaged-induced strain localization problems. This
demands a third-order displacement gradient for the regularization of nonlinear SGS formulation,
which will be discussed in a separate paper.
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