# LS-DYNA® Advanced FEM, Meshfree & Particle Methods Material Design & Manufacturing

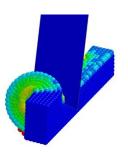
## Mechanical performance of material:

- Composite material modeling in multiple scales
- Bottom-up material data processing

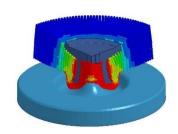
### **Features:**

- Representative volume element (RVE)
- Reduced-order homogenization
- Deep material network (machine learning)

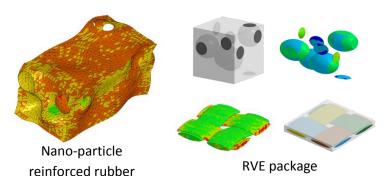
# **Manufacturing analysis:**


- Bulk forming: forging, extrusion
- Machining: cutting, shearing, polishing
- Jointing: riveting, welding, drilling
- Brittle, ductile and rubber-like materials
- 3D printing process and performance test

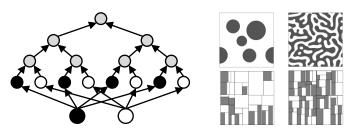
### **Features:**


- Multiple advanced numerical tools
   Element free Galerkin (EFG)
   Meshfree-enriched FEM (ME-FEM)
   Smoothed particle Galerkin (SPG)
   Smoothed particle hydrodynamics (SPH)
   Peridynamics
   eXtended FEM (X-FEM)
- 2D and 3D (shell & solid)
- Particle immerse
- Explicit and Implicit analysis
- Coupled thermal mechanical analysis
- Adaptive re-meshing
- Physics-based failure model

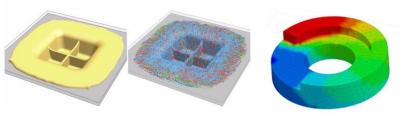



www.lstc.com




Metal cutting

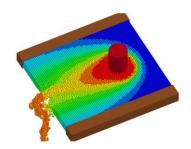



Riveting

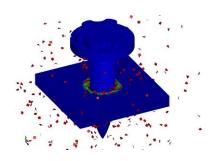


RVE analysis (Virtual material test module)

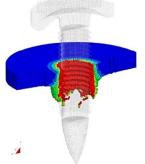


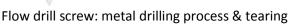

Homogenization (Model reduction & deep material network)

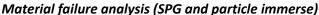



Composite compression molding

3D printing (PBF)


Coupled thermal-mechanical analysis (EFG adaptivity)





Friction stir welding (SPH)



CFRP drilling (Peridynamics)







# LS-DYNA® Advanced FEM, Meshfree & Particle Methods **Structural Analysis and Impact/Penetration**

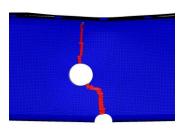
# **Structural Analysis:**

- Virtual mechanical testing
- Manufacturing-induced structural response
- Material failure characterization

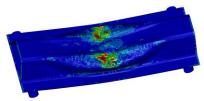
#### **Features:**

- Model building and showing by LS-Pre/Post
- Failure analysis in base materials including brittle, semi-brittle and ductile fracture
- Failure analysis in CFRP including delamination, in-plane failure and their interaction
- Failure analysis in various joints including spot weld, bolt, screw, FDS, SPR

## Impact/penetration:


- High strain rate and high momentum
- Large and extreme deformation
- Material failure, separation and fragmentation
- Secondary damage induced by debris

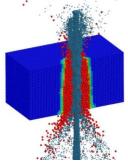
### **Features:**


- Galerkin particle formulation with Lagrangian kernel for convergence and stability
- Bond failure mechanism for material failure without material deletion
- Bond failure criteria calculated by phenomenological material laws
- Self-contact algorithm to deal with interaction of failed particles

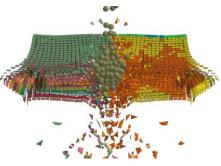


(SPH)




Metal 3-point bending (X-FEM shell)

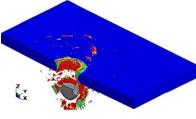



CFRP 3-point bending (Peridynamics)

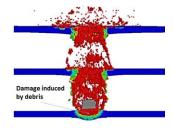


Ball impact on CFRP (Peridynamics)

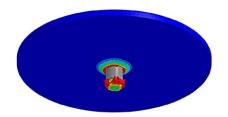



Water jet impacting concrete block (SPH-SPG)

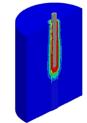



Bird striking CFRP laminate (SPH-Peridynamics)

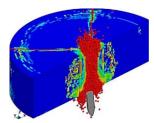



www.lstc.com

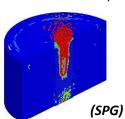



Perforation of aluminum slab




Perforation of steel plates




Impact plugging



Penetration of steel cylinder



Perforation of thin concrete cylinder



Penetration of thick concrete cylinder