

Ductile materials

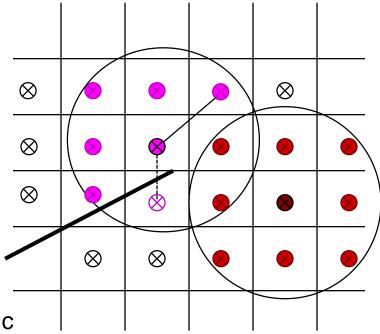
Nonlocal continuum damage model

$$\widetilde{\varepsilon}^{ep}(X) = \frac{1}{\int_{\Omega_X^0} \psi^{R_{non}}(Y;X) d\Omega} \int_{\Omega_X^0} \psi^{R_{non}}(Y;X) \varepsilon^{ep}(Y) d\Omega, \forall X \in \Omega^0 \qquad d = f(\widetilde{\varepsilon}^{ep})$$

Length scale R_{non} is a material constant

Ductile materials

Local constitutive law + strain regularization + strain-based criterion
+ modified cohesive law


$$\overline{\varepsilon}^{p} = \sum_{i=1}^{NP} \phi_{i}^{a} \varepsilon_{i}^{p}$$

 ϕ_i^a is the meshfree shape function with kernel size *a*, the length scale of the regularization zone, a material constant

Visibility criterion applies for integration points crossing the crack path

Modified cohesive law takes care of plastic work around the crack tip

Failure criterion: $\bar{\varepsilon}^p \ge \varepsilon_c^p$

Strain Regularization