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Highlights 
• Three dimensional smooth particle Galerkin formulation is presented 

• An adaptive anisotropic Lagrangian kernel is utilized 

• A bond-based failure criterion is introduced 

• A frictionless self-contact algorithm has been developed 

• Numerical results are validated with test data for high velocity impact 

penetration on concrete structures 
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Abstract 
 

In this paper, we model the three-dimensional concrete impact and penetration problems using a 

stabilized meshfree method. The present method is established using a non-residual penalty term 

from strain smoothing as a means of stabilizing the meshfree nodal integration method under the 

Galerkin framework. As a result, the meshfree discretization leads to a dual stress point 

algorithm with the stabilization parameterized by a measure of a local length scale. An adaptive 

anisotropic Lagrangian kernel is considered in junction with the stabilized meshfree formulation 

for the severe deformation analysis. In order to avoid the spurious damage growth and material 

self-healing in concrete failure analysis, a bond-based failure criterion is introduced. A 

frictionless self-contact algorithm is also developed to model the interaction between concrete 

debris in damage. Several impact examples are investigated including the study of scabbing and 

perforation of concrete under high velocity impact. The numerical results are compared with the 

experimental data to demonstrate the effectiveness of the present method.    

 

Keywords: Smoothed particle Galerkin; Impact penetration; Concrete; Meshfree 

   
 

 

1. Introduction 
 

The necessity to model the severe deformation followed by moving discontinuities in three-

dimensional concrete impact and penetration problems makes numerical simulation extremely 

difficult by the conventional mesh-based numerical methods such as the Lagrangian finite 

element method. Although the Eulerian description for fluid mechanics applications can be easily 

adopted to circumvent the mesh distortion problem encountered in the Lagrangian formulation, 

the Eulerian representation of material flow presents other numerical difficulties in tracking the 

material points and free surfaces in concrete impact and penetration simulations. Alternatively, 

the arbitrary Lagrangian Eulerian (ALE) algorithm [1] advances the mesh independently with 

material flow and makes it possible to take into account the movements of free surfaces while 

reducing mesh distortion. Regardless of this distinct property offered by ALE method, its 

shortcoming is the occurrence of numerical oscillations when the convective effect is dominant 
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in the governing equations. This numerical instability often arises in impact and penetration 

simulation when the velocity difference between the mesh movements and medium flow 

becomes evident. As a generalization of Eulerian approach, the ALE method also has difficulty 

to model the formation of new surfaces in the course of perforation and fragmentation processes. 

Meshfree methods, on the other hand, offer diverse numerical advantages over the 

conventional mesh-based numerical methods in modeling large deformation [2, 3], moving 

discontinuity [4] and immersed problems [5]. Meshfree methods can be roughly categorized into 

discontinuous and continuous approaches. The Discrete Element Method (DEM) [6] is a 

representative discontinuous meshfree method based on the contact interactions between discrete 

grains to model the motion of granular materials. In contrast to DEM that describes the problem 

at particle scale, the majority of meshfree methods belong to the continuous approach that 

discretizes the problem at a field-scale level [7]. In essence, the material behavior in continuous 

meshfree methods is endowed with the conservation properties (mass, momentum and energy), 

and the uniqueness and convergence of solutions are ensured under appropriate variational 

principle and relevant field approximations. Especially, an accurate constitutive model for 

continuous meshfree methods is desired to obtain sufficient information of stress and 

deformation fields for capturing the fundamental structure response as well as the projectile 

characteristics in concrete impact and penetration simulations.  

The earliest development in the continuous meshfree methods is the Smoothed Particle 

Hydrodynamics (SPH) method. The foundation of the SPH method is the kernel estimate 

introduced by Monaghan [8]. In SPH method, partial differential equations are transformed into 

integral equations and the kernel estimate then provides the approximation to estimate the field 

variables at the discrete particles. Since the functions are evaluated at the particles, the use of a 

mesh is no longer required. This ability to handle severe deformations without the use of meshes 

in fluid-like motion allows the SPH method to be applied to problems that historically have been 

reserved for Eulerian approaches [9]. In spite of that, a direct application of SPH method to solid 

mechanics problems is known to suffer numerous numerical deficiencies [10, 11], namely the 

lack of approximation consistency, tension instability, presence of spurious low-energy modes, 

dispersive wave propagation, complication in enforcing the essential boundary conditions, 

difficulty to represent the crack surface in 3D problem and inability to prevent the material self-

healing in failure analysis. While many SPH models [12 -14] have been utilized to simulate the 

severe deformation and material failure in concrete impact and penetration problems, less 

attention [7, 15, 16] was paid to the improvement of the unstable results induced by those 

numerical deficiencies. 

In the past two decades, many advanced meshfree Galerkin methods were developed to 

resolve some of the numerical issues in SPH method. Among them, Element-free Galerkin 

(EFG) [17] and Reproducing Kernel Particle Method (RKPM) [18] are two earliest meshfree 

methods to tackle the issues of approximation consistency and boundary conditions in SPH 

method. In addition to the improvement of approximation consistency, a Galerkin-based SPH 

formulation [19] was developed to intensify the formulation consistency for the analysis of free 

surface flows. In the meantime, the Cracking Particles Method (CPM) was developed [20] to 

provide a simple way for the description of evolving cracks in brittle fracture analysis. As an 

alternative to the visibility method [1] and the methods based on geometric information or 

screening effects [22], a discontinuous representation of the crack surface in CPM is delineated 

through the enrichment of step function at cracking particles. This unique feature of CPM makes 

it attractive to model the complex fracture behavior in three-dimensional case. The Stabilized 
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Conforming Nodal Integration (SCNI) method [23] is another representative meshfree method 

introduced to ameliorate the spurious low-energy modes present in meshfree direct nodal 

integration scheme. The SCNI technique was later generalized to higher order strain smoothing 

by Duan et al. [24] to achieve cubic rates of convergence in the L
2
 norm for the linear analysis.   

Arbitrary high order Galerkin exactness for SCNI method was also derived [25] under the 

general framework of variational consistency for improving the integration errors in meshfree 

methods. In the meantime, different integration schemes [26, 27] based on SCNI method also 

have been proposed to enhance the numerical stability of SCNI method. A modification of SCNI 

algorithm to the stabilized non-conforming nodal integration (SNNI) scheme [28] also has been 

developed to bypass the need of constructing the conforming smoothing cells for nodal 

integration. Despite the irreconcilable demands on the stabilization control parameter placed by 

the accuracy requirement, the SNNI scheme has been successfully applied to the model of the 

concrete impact and penetration problems [29]. Several regularized meshfree methods [30 – 32] 

were also developed based on the concept of SCNI method for the material failure analysis. 

Nevertheless, most meshfree methods cannot preclude the use of background mesh or smoothing 

cells, thus pose significant challenges from both the mathematical formulation and the 

programming aspects in the three-dimensional simulation of severe deformation and material 

failure problems.  

The Smoothed Particle Galerkin (SPG) method [33, 34] recently introduced by Wu et al. is a 

new continuous meshfree method that aims to bypass the need of background mesh, reveal a 

proper stabilization setting and guide the development of practical nodal integration schemes for 

severe deformation problems. The essence of SPG method is an introduction of strain operator 

for stabilization. Most notably, the strain operator is invertible stable and well-defined in the 

severe deformation analysis [34]. In the earliest SPG method [33], the strain operator is defined 

through a strain gradient stabilization (SGS) scheme [33, 34]. In SGS scheme, the first-order 

strain gradients are derived based on the decomposed strain field from the displacement 

smoothing. In the subsequent SPG method [35, 36], the first-order strain gradients are derived 

based on a direct strain smoothing leading to a penalty-based h
2
-stabilization formulation. As 

opposed to the residual type stabilization [28, 37], the SPG stabilization formulation is a non-

residual type in which the penalized stabilization functional is parameterized by a measure of the 

local length scale without a need of stabilization control parameter. Following that, an 

incorporation of second-order strain gradients in the SPG formulation has led to a development 

of the regularized SPG method [35] for the analysis of damage-induced strain localization 

problem in elastic materials. Most recently, a particle insertion-deletion scheme [36] has been 

introduced to the regularized SPG method to substantially model the ductile fracture in two-

dimensional explicit dynamics analysis. 

The scope of this paper is to present an improved SPG method for the prediction of 

fundamental structure response and projectile characteristics in the three-dimensional concrete 

impact and penetration problems. The present method combines our previous development in 

two-dimensional large deformation analysis [34] and several numerical enhancements in failure 

analysis. The outline of the paper is organized as follows: An overview of smoothed particle 

Galerkin method for large deformation analysis is given in Section 2. The corresponding three-

dimensional discrete equations and resulting dual stress point algorithm for spatial integration are 

described in Section 3. The adoption of adaptive anisotropic Lagrangian kernel in the three-

dimensional formulation is also described in the same section. Section 4 presents a regularized 

concrete damage model. The consideration of bond-based failure and self-contact between 
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damage particles also is discussed in Section 4. Numerical examples are presented in Section 5, 

and finally the conclusions are made in Section 6. 

                

2. Overview on the SPG method  

 

Consider a three-dimensional body Ω
0
 

3R defined in the reference configuration. The 

image of Ω
0 

is the current domain denoted by Ω, and the motion Φ is described by  tΦ ,Xx  , 

where  Tt  ,0 is the time, X and x are material and spatial coordinates, respectively. The strong 

form of the dynamic problem can be stated by the following [38]: 

 

 ,     ij j i ib u in     (1) 

 
gii ongu       (2) 

 
hijij onhn         (3) 

 

where σij is the Cauchy stress tensor, ρ is material density, bi is the component of body force, ui is 

the displacement component, gi is the prescribed boundary displacement, ni is the unit outward 

normal vector, hi is the traction imposed on Neumann boundary. We also have 
hg    

and 0 hg  denoting the Lipschitz continuous boundary. 

In SPG method [33 – 36], the stabilization strain field is introduced to the standard 

variational formulation through a penalty approach. For simplicity, we assume the homogenous 

Dirichlet problem in the following variational derivation. The admissible space for the 

displacement fields is defined by 

 

           ,: 1 onh
0vHvvV  (4) 

 

where H
1 

is the Sobolev space of degree one that is regular enough to make the variational 

problem well-defined. 

For a particle distribution denoted by an index set  NP

IIIZ
1

 x , we approximate the 

displacement field using the meshfree approximation to give 

 

      



NP

1I

I

a

I

h xxuuxxu   ˆ~  (5) 

 

where NP is the total number of particles in discretization.  x
a

I , I=1,…NP can be considered 

as the shape functions of the meshfree approximation for displacement field  xu
h . Note that the 

radius size a of  x
a

I  is a numerical length parameter in meshfree displacement approximation. 

In general, Iu~  is not the physical particle displacement and is often referred to as the 

“generalized displacement” [2] of particle I in Galerkin meshfree method. As a result, special 

essential boundary condition treatment is needed. In order to simplify the enforcement of 

essential boundary condition in this study, a first-order meshfree convex approximation [39] is 

considered. They are constructed by the Generalized Meshfree Approximation (GMF) method 
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(see [39] for detail mathematical derivation and [40] for the nonlinear formulations in general 

solid mechanics applications). The most recent development of meshfree convex approximation 

can also be found in [41, 42].  With the meshfree convex approximation, we can define the 1

0H -

conforming subspace for the approximation of displacement field to be 

 

   
I

0a

I

a

I

h ZIΩ, supp     span: V  (6) 

 

Using the defined approximation space, the weak form for the given problem can be obtained 

based on the penalized variational formulation [33 – 36] through an updated Lagrangian 

approach with reference to the current configuration. The weak form problem is to find 

  hVxu ˆ  such that the first variation in the energy is zero: 

 

 
h

penaltyinertiaext WWWWW Vu ˆ  0int   (7) 

 

with 

   


ddW σu :ˆ
int                                 (8) 

 ˆ ˆ
h

extW d d  
 

     u b u h                            (9) 

  


dWinertia uu ̂ˆ                                       (10) 

    


dW b

penalty   σxλu ~:ˆ2                         (11) 

 

where   is the spatial gradient.  dσ  is the Cauchy stress obtained by direct nodal integration 

scheme and d is a monotonic increasing scaler damage variable introduced by the damage law in 

concrete model which will be described in Section 4. 
bλ  is the coefficient matrix for stabilization 

and is given by [35, 36] 

 

      
dΩ-;Ψ bb

x-ξξxxxλ
~

                        (12) 

 

where 
bΨ

~
 is the strain smoothing function for stabilization in meshfree nodal integration 

method,   0
~

rbΨ  for   0Ψb b  rr
~

  ,  for br , and subscript b denotes the radius of three-

dimensional influence domain for the strain smoothing function [35, 36]. In this study a = b (for 

stabilization) is used for all numerical investigations. The penalty term 
penaltyW in Eq. (11) 

contains an enhanced stress field for stabilization. Note that stress quantities in Eq. (11) are 

defined in the current configuration Ω.  

Considering that the Lagrangian meshfree shape function [2, 34, 36] and the gradients of 

displacement and strain approximations are defined in the reference configuration to avoid the 

tensile instability and dispersive wave propagation, the variation equations of Eqs. (8) ~ (11) are 

transformed from the current configuration Ω to the reference configuration Ω
0
 as 

 

σ~
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   

0 0

0

0 0

2
0

ˆ
ˆ ˆ

ˆ
ˆ                           

-1i
i i kj ij

k

-T -1 b exti
im nk k ij

m n

u
u u d F σ J d

X

u
F F σ J d l

X X


 




 




  




  

 

 

 x u

             (13) 

  
0 0

ˆ ˆ ˆ
t

ext 0l d d 
 

     u u b u h                       (14) 

  Fdet0 J ,  
   


 









NP

I

Ii

j

a

I

j

i
ij x

XX

x
F

1

XX
X


                      (15) 

 

where F is the deformation gradient, xIi denotes the i-component of current position at node I , 

and X =[X, Y, Z]
T
 is a position vector defined in the reference configuration. J

0
 is the determinant 

of the deformation gradient.  

 

3. Spatial Discretization 

 

Using the first-order meshfree convex approximation [39, 40] for  X
a  and zero-order 

strain smoothing function for  XbΨ
~

 leads to the following discrete form of momentum 

equation to be solved for explicit dynamics analysis in three-dimensional problem: 

 

 
stabintextlump fffUM

~ˆ 


                         (16) 

    33

1

0





 IXM 0

NP

N

NN

a

I

lump

I V                               (17) 

 

where extf is standard external force matrix, U
̂

is the matrix contains nodal accelerations. 0

KV is 

the initial nodal volume of node K, and lump

IM is the lumped nodal mass matrix. The internal 

force matrix is computed by the direct nodal integration scheme as 

 

      



NP

N

NNNN

T

I

DNI

I VJ
1

00int
XσXAXBf            (18) 

  

 
 

 
 

 
 

 
 

 































X

X

X

X

X

X

X

X

X

B

2

1

3

1

3

2

3

2

1

00

00

00

00

00

00

00

00

00

I

I

I

I

I

I

I

I

I

I

b

b

b

b

b

b

b

b

b

X                                        (19) 

    XX
a

IIb x,1  ,    XX
a

IIb y,2   and    XX
a

IIb z,3                              (20)               
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



















































1

21

1

22

1

23

1

13

1

11

1

12

1

33

1

32

1

31

1

11

1

12

1

13

1

33

1

31

1

32

1

23

1

22

1

21

1

31

1

32

1

33

1

23

1

21

1

22

1

13

1

12

1

11

000

000

000

000

000

000

000

000

000

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

FFF

A                                                (21) 

Finally, the stabilized force matrix is also computed by the direct nodal integration scheme as 

 

      



NP

N

NNN

T

IN

T-
DNI

stab

I VJ
1

00~~~
XσXBXFf                                      (22) 

 

The first-order strain-gradient matrix 
IB

~
in Eq. (22) is given by 

 

  

 
 

 
   
   

   

























XX

XX

XX

X

X

X

B

23

13

12

3

2

1

~~
0

~
0

~
0

~~

~
00

0
~

0

00
~

~

II

II

II

I

I

I

I

bb

bb

bb

b

b

b

X                         (23) 

 

The components of the first-order strain-gradient matrix 
IB

~
are   

 

              XXXXXXX
xz,xy,xx,1

~ a

I

b

z

a

I

b

y

a

I

b

xIb               (24) 

              XXXXXXX
zy,yy,yx,2

~ a

I

b

z

a

I

b

y

a

I

b

xIb               (25) 

              XXXXXXX
zz,zy,zx,3

~ a

I

b

z

a

I

b

y

a

I

b

zIb               (26) 

     



NP

J

J

b

J

b

x XXΨ
1

~
XX                           (27) 

     



NP

J

J

b

I

b

y YYΨ
1

~
XX                            (28) 

     



NP

J

J

b

I

b

z ZZΨ
1

~
XX                           (29) 

 

 11 22 33 12 13 23, , , , ,T      σ  is a vector containing the component of Cauchy stress associated 

with the stabilization. Note that
a

yxI

a

xyI ,,   , 
a

zxI

a

xzI ,,    and 
a

zyI

a

yzI ,,   . In explicit dynamics 

analysis, the nodal stabilized stress vector [35, 36] is updated using the incremental stabilized 
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stress vector computed according to the suggestion of Belytschko and Lee [44] and is given in 

large strain by 

 

 tJ

1n1n1n    σσσ ~~~                     (30) 

The Jaumman stress rate of the Cauchy stress for stabilization is 

   WσσWvBσ   nn1ndev

J

1n dG ~~~
1

~
2~                                     (31) 

 

where W is spin tensor. T

nnnn 111
~~

  QσQσ  follows the Hughes and Winget [45] incrementally 

objective integration scheme and Q is the incremental rotation tensor. G
~

 is called the “modified 

shear modulus” [44] which is computed by 

 

 
eH

Η
G




~

2                                  (32) 

 
 


3

1

3

12

1

i j

ijijH   , 
 


3

1

3

12

1

i i

ijije eeH 
                  (33) 

 

ij and 
ije are the components of deviatoric part of the stress and strain increments, 

respectively, which are obtained from the regularized nodal stress and strain computation. devB
~

 is 

the deviatoric part of first-order strain-gradient matrix B
~

. 

In order to handle the severe deformation that is beyond the applicability of Lagrangian 

shape function in Eq. (14), an adaptive anisotropic Lagrangian kernel is considered [34]. Using 

the chain rule, the calculation for the deformation gradient in Eq. (16) can be rewritten [34, 46] 

as 

 

 
nmnmn

FFF
 


                               (34) 

 

where  xF


mn  is the decomposed deformation gradient, from t=tn to tn+m, computed based on 

the new reference configuration and is given by 
 

    














NP

1I

iIJ

j

I

j

i
J

mn

ij x
X

Ψ

X

x
F





XX                       (35) 

 

Here,  
mnt  ,~ XuXx


 is a position vector defined in the new reference configuration

 
nt,XxX 


. Since this particle-based reconstruction step for the computation of deformation 

gradient does not involve remeshing as that in the r/h-adaptive finite element methods, the stress-

recovery techniques and remapping procedures that interpolate the internal variables at the 

integration points from the old discretization to the new discretization are not necessary. This 

unique property of present method leads to a relatively simple mathematical formulation for 
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computer programming in terms of simulating the severe deformation in large-scale three-

dimensional problems.  

In this study, the adaptive anisotropic Lagrangian kernel is constantly updated over a period 

of time. In each new reference configuration, an ellipsoidal nodal support is defined for the 

neighbor particle searching. In three-dimensions, a local 
IX


-coordinate system in which the 

axes are parallel to the global Cartesian coordinates and with its origin located at IX


 is defined 

for each meshfree node I as shown in Fig. 1. The ellipsoid of each meshfree node I is defined by 

another local IX


-coordinate system formed by a dyad of mutually perpendicular vectors n

Iih , 

i=1, 2, 3, the semi-major axes of the ellipsoid.  

The three-dimensional ellipsoidal cubic spline kernel function can be defined in the local IX


-coordinate system by 
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
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I

J
IJ

h

Z

h

Y

h

X
-




111  XX                      (36) 

 

 

Fig. 1. Ellipsoidal nodal support in three-dimensional adaptive anisotropic Lagrangian kernel 

approach. 

  

where n

I1

nh h1
 , n

I2

nh h2
and n

I3

nh h3 are the semi-major axes of the ellipsoid. I

JX


, I

JY


 and 

I

JZ


are the projections of relative position vector 
IJ XX


 on the local IX


-coordinate system 

respectively. 1  is the standard one-dimensional cubic spline kernel function. In general, we have 
0

3

0

2

0

1 hhh   as a spherical shape cubic spline kernel function at t=0. The spherical shape 

domain of cubic spline kernel function deforms and rotates according to the Lagrangian motion 

between each two adaptive Lagrangian kernel steps. In this study, the evolution of ellipsoid is 

I

J

IX


IY


IZ


IX


IY

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

n

I1h
n
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n

I3h

I

JX


I
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determined by the right Cauchy-Green deformation tensor  

 

    
ii

i

n

i

nTnn
nnFFG  



3

1

3
                        (37) 

 

where 3,2,1, in

i are three distinct principal stretches and  
ziyixii nnn ,,n ,i=1,2,3 are the 

corresponding eigenvectors. Therefore, the length and direction of the semi-axes of ellipsoid are 

estimated by the eigenvalues and eigenvectors, respectively, of the matrix G
n
. In other words, the 

eigenvalues of G
n
 represent three principal stretches of the ellipsoid at t=tn. As a consequence, 

the semi-major axes of the ellipsoid are approximated by 

 

 0

111 hh nn   , 0

222 hh nn   and 0

333 hh nn                     (38) 

 

and the vectors  
ziyixi

n

ii

n

i

n

Ii nnnhh   nh , i=1,2,3 are obtained. The gradients of the three-

dimensional ellipsoidal cubic spline kernel function needed in the computation of displacement-

gradient matrix B and the stabilized strain-gradient matrix dev
B
~~

can also be evaluated by 
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       (39) 

 

The computation of system of equations in Eq. (16) involves two coinciding stress points at 

each meshfree node, one for standard nodal stress  and the other for the stabilization nodal 

stress . This dual stress point integration scheme is illustrated in Fig. 2. Note the present study 

utilizes the convex approximation to approximate the solution in Eq. (5). Different from other 

coupling approaches in meshfree methods [47, 48], the convex approximation imposes weak 

Kronecker-delta property [39] on the boundary of problem domain as well as the coupling 

interfaces between FEM and SPG domains. Our previous dispersion error analysis analyses [43] 

indicate that the convex approximation minimizes the sampling aliasing and produces a better 

solution than standard non-convex approximation (such as approximations in EFG and RKPM 

methods) in Fourier transform domain. Our analysis [43] of full-discretization in the wave 

equations also indicates that convex approximation produce less amplitude error and phase error 

than standard meshfree approximation. Our other study [49] also suggests that convex 

approximation is able to generate a more stable solution, improve solution errors and reduce the 

wave reflections in a coupling method. 

Finally, the critical time step for the central difference time integration in the explicit 

σ
σ~
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dynamics analysis is governed by the Courant-Friedrichs-Lewy (CFL) condition and is 

determined following the development in [34, 36, 43] for our numerical study. With the 

additional stabilization term, the critical time step Δtc is modified according to the eigenvalue 

inequality theorem [50] to become 

 I

NPI

ct

max
,1

max

2




                                                                (40)    
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where 
  

  



211

11






dE
cd

 is the material sound speed for damage model. E and ν denote the 

Young’s modulus and Poisson’s ratio respectively. The spatial derivatives of the Lagrangian 

shape function in inequality (41) are computed using the chain rule given by 

  1,2,3i
x

X

Xx i

j

j

0

J

i

0

J0

iJ,iJ, 












  ,


 X                                          (43) 

The explicit dynamic analysis using Equation (40) gives a conservative estimation of critical 

time step but very stable results in the nodal integration method. It is worthwhile to note that the 

meshfree time steps in the explicit dynamics analysis are controlled implicitly [34, 36, 43] by the 

radius size a of  x
a

I  from the adaptive anisotropic Lagrangian kernel instead of the closet 

nodal distance or element size in finite element method; therefore they will not be cut down 

abruptly due to severe material deformation. 
 

 

Fig. 2. Illustration of dual stress points in the present method. 

 

4. Concrete Model and Failure Analysis 
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This section describes a regularized constitutive model for the failure analysis of concrete 

material under the dynamic loading conditions. The material modeling of concrete behavior is 

critical to the success of numerical prediction of the impact characteristics of a projectile on a 

concrete target. The most frequently used phenomenological concrete model accounts for elastic-

plastic deformation, damage, hydrostatic stress and strain-rate effects, as an extension of the 

metal plasticity model [51, 52]. 

The phenomenological model developed by Malvar et al [51], named as the Karagozian & 

Case concrete (KCC) model, has been evaluated and validated by many users for both pretest 

predictions and posttest validations [53 – 60]. Through these studies, the KCC model has been 

proven to be able to physically capture the concrete responses under quasi-static, high frequency 

blast, impact, and ballistic loadings.  Therefore, it is employed in this study to describe the 

concrete behaviors. 

 

4.1. Concrete strength surfaces 

 

The KCC model employs three independent, pressure sensitive strength surfaces to establish 

the strength,  3, ,p J  , of the concrete, which is defined as: 

 

  
          

          

3

3

3

ˆ ˆ ˆ
, ,

ˆ ˆ ˆ

f m y y m

f m r r m

r J p p p
p J

r J p p p

      


      

         
  

        

 (44) 

 

The strain rate enhancement is imposed through a user input dynamic increase factor 
fr . The 

dependence on the third invariant ( 3J ) of the deviatoric stress is introduced to capture the 

difference between triaxial extension and compression behaviors and  3J  takes the form 

proposed by Willam and Warnke [61]. The three independent strength surfaces are defined as: 

 

   0

1 2

ˆ , ,i i

i i

p
p a i m y r

a a p
   


 (45) 

 

The three strength surfaces in Eq. (44) and Eq. (45), namely, ˆ
m , ˆ

y , and ˆ
r , are called the 

maximum, yield and residual strength surfaces respectively.  The nine parameters to define these 

surfaces (i.e., 0ia , 1ia , and 2ia  in Eq. (45) should be calibrated from experimental data. 

Eq. (44) reveals that the concrete strength is interpolated between either ˆ
y  and ˆ

m  or ˆ
m  

and ˆ
r  through the factor    .     is a monotonic function of the modified plastic strain  . 

The relationship between   and   is calibrated through experimental data. A typical    

relationship is shown in Fig. 3, which also discloses that   1.0m   . Fig. 3 also shows that   

increases monotonically from 0.0 to 1.0 as   increases from 0.0 to m  and decreases 

monotonically from 1.0 to 0.0 as   increases from m  to  . The former indicates the failure 

surface migrates from the yield strength surface to the maximum strength surface (strain 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14 

 

hardening process) and the latter implies the failure surface evolves from the maximum strength 

surface towards the residual strength surface (strain softening process). 

 

 

Fig. 3. Typical    relationship for the KCC model. 

 

4.2. Plastic behavior 

 

The plastic behavior in the KCC model is defined through the classical von-Mises plasticity 

theory. The yield function is formulated as: 

 

  2 3( , , ) 3 - , , 0p J p J    σ  (46) 

 

On the other hand, the KCC model introduces partial associativity to account for pressure 

induced by plastic flows at different levels, which leads the plastic potential to be written as: 

 

  2 3( , , ) 3 , ,p J p J     σ  (47) 

 

where   is the associativity parameter. 

The evolution of   is defined as a function of the rate of plastic strain tensor: 

 

   ph p   (48) 

with 
2

:
3

p p p  ε ε , and the strain hardening factor  h p  is defined as: 
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

 (49) 

 

with 1b  and 2b  being the material parameters calibrated from test data for compression and 

tension respectively, and tf  is the tensile strength of the concrete. The 1b  and 2b  are also the 

regularization parameters used in the KCC model to alleviate discretization dependence, which 

will be demonstrated in a later example. 

Following the standard return-mapping algorithm [62], the increment of the modified plastic 

strain (  ) can be obtained as: 

 

 

     
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 
 
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 

          
      

    

 (50) 

 

where G  and K  are shear and bulk modulus respectively. 

As a result, the modified plastic strain can be accumulated as: 

 

 1n n        (51) 

 

Finally, the damage variable d  introduced in Eq. (8) is defined as: 

 

  

1

1 md






 
  
 

 (52) 

 

Since   is a monotonic function of the effective plastic strain 
p , d  is a monotonic 

function of the effective plastic strain 
p  as well. 0.0d   when there is no plastic deformation, 

0.5d   when it hardens to the maximum strength surface ( m  ), and 1.0d   when it 

softens to the residual strength surface (  ). 

 

4.3. Model Regularization 

 

Concrete is a strain softening material, and therefore pathological discretization dependence 

will inevitably occur numerically. To alleviate this discretization dependence, the KCC model 

defines the discretization dependent damage evolution parameters 1b  and 2b  for compressive and 

tensile damage evolution respectively. With regularized 1b  and 2b , relatively discretization 

independent results can be obtained. 

Fig. 4 shows the stress – strain responses obtained with the proposed SPG formulation and 

the KCC model with 1b  regularization compared with the experimental data. The legend shows 

the shortest nodal distance of the SPG particles. The test performed is an unconfined uniaxial 
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compression (UUC) of a plain concrete cylinder. The concrete has an unconfined compressive 

strength of 45.4 MPa. The numerical results are close to the test data for different discretizations.  

 

 

Fig. 4. Stress-strain responses for UUC tests by SPG. 
 

Fig. 5 demonstrates the displacement – fracture energy and displacement – stress responses 

for an unconfined uniaxial tension (UUT) test of a plain concrete material. The concrete has an 

unconfined compressive strength of 45.4 MPa and a fracture energy of 80.2 N/m. The numerical 

results are obtained with the proposed SPG formulation and the KCC model with 2b  

regularization, except the last one, which is obtained with the FE formulation. Once again, the 

legend shows the shortest nodal distance of the meshfree particles. The numerical results are 

obtained from single element simulations. The figure reveals that although the displacement – 

stress responses differ significantly, each element can dissipate about the same amount of 

fracture energy, which is the major interest for the analysis of this type of problem. 

 

   

Fig. 5. Responses for UUT tests by SPG: (a) fracture energy, (b) stress. 

(a) (b)
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4.4. Failure Analysis 

 

It is worthwhile noting that we have to limit the damage variable to be bonded by d < 1 such 

that the fully damage (d = 1) does not occur. This is because the continuous problem is defined 

only when 0 ≤ d <1. When d = 1 in Eq. (52) occurs, the modified plastic strain becomes infinite 

which is incomputable. In other words, if d = 1 is allowed in the damage model, the 

displacement discontinuities will be initiated. As a result, a crack will be formed and a strain 

singularity will thus be unavoidable at the crack tip. Numerically, this can be avoided by limiting 

the damage valuable d to a small value before fully damage. In this study a simple way to 

determine the value is to perform UUC and UUT tests. Fig. 6 shows the normalized material 

strength – damage responses. The material strength determined by Eq. (44) is normalized by its 

unconfined compressive and tensile strength respectively. The damage is calculated by Eq. (52). 

It can be observed that the material strength is about 40% of its original strength when the 

damage is up to 98.5%, and less than 5% when the damage is about 99%.  

 

   

Fig. 6. Normalized strength vs damage: (a) UUC, (b) UUT. 

 

On the other hand, excessive straining may arise under severe deformation since the material 

across the damage zone remains kinematically connected at almost zero stress levels [68]. As a 

result, the discontinuity is prohibited in the displacement field that leads to spurious damage 

growth in the severe deformation analysis. To prevent this non-physical behavior in the solution, 

two neighbor particles are considered disconnecting during the neighbor particle searching 

whenever their averaged damage value reaches a critical value. This numerical treatment is 

similar to the bond failure in peridynamics [46, 63, 64] method that avoids an explicit 

representation of the crack surface in 3D problem. In other words, we can redefine the three-

dimensional ellipsoidal cubic spline kernel function in Eq. (36) for a pair of particles I and J to 

be 

 

Zoom in
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Zoom in
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Because the damage variable d at each particle is monotonically increasing during the course 

of deformation, the disconnection between two particles in a pair is considered a permanent and 

irreversible process. This is an important characteristic of the present method in solid mechanics 

applications since the non-physical material self-healing issues can be completely exempted 

from the failure analysis.  

Additionally, a frictionless self-contact algorithm is considered in this study to model the 

interaction between fully damaged concrete particles. Let xI and xJ be the position vectors for 

particle I and particle J respectively. The normal gap in particle-to-particle contact algorithm is 

given by 

 

    I

aJIJ

IJ

IJ
IJ

IJIJIJ

ng supp   xx
x

x
xxng                 (54) 

 

where 
IJ

IJIJ

x

x
n   is the normal unit vector of the particle-to-particle contact pair, 

JIIJ

IJ
xxxg   defines corresponding gap function as shown in Fig. 7 and   is the 

associate norm representing the distance between two particles. For each penetrating slave 

particle J, the penalty force required to cancel the penetration to master particle I is evaluated by 

 

 0     , 
IJ

IJ
IJ

IJIJ

nn

scont

nIJ ifgp
x

x
vnf                            (55) 

 

where pn is the penalty number to enforce the normal contact and is taken as Epn  01.0  in this 

study. E is the Yong’s modulus in concrete material. It is apparent that we have 
scont

nJI

scont

nIJ ,, ff   

which satisfies the Newton’s third law for particle interactions. Finally, the resultant frictionless 

contact force for particle I is calculated by 

 

   0 and  supp   ,,  
 IJ

IJ
IJ

I

aJ

IJIJ

nn

NP

IJ

scont

nIJ

NP

IJ

scont

nI φgp
x

x
vxnff          (56) 

 

Eq. (56) is added into the right hand side of Eq. (16) to consider the self-contact effect for 

modeling the interaction between concrete debris in damage.  
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Fig. 7. Schematic sketch of two particles in contact. 

 

5. Numerical Example 

 
In this section, we evaluate the numerical performance of the proposed method for the 

simulation of three-dimensional concrete impact and penetration problems. One perforation test 

and one penetration test performed by Unosson and Nilsson [53] are analyzed herein. The 

projectile used in the tests is armor piercing steel projectile with a mass of 6.3 kg. The projectile, 

which has an ogival nose radius of 127 mm, a total length of 225 mm and a diameter of 75 mm, 

was fired perpendicularly to the center of the cylindrical specimen. The concrete specimen is 

made of high strength concrete with an unconfined compressive strength of 153 MPa and density 

of 2770 kg/m
3
. 

 

5.1. Perforation Responses 

 
In the perforation test, the concrete specimen has a diameter of 1400 mm and a length of 

400 mm. The projectile was fired at a velocity of 621 m/sec towards the center of the specimen. 

The geometry and discretization of the model are shown in Fig. 8 where the black object is the 

projectile that is modeled by the finite element method with elastic material. Since the material 

failure in an impact penetration event is usually very localized, the immediate area under the 

projectile impact is modeled by the present method in this test while the rest of the concrete 

specimen can be modeled by finite element method to save computational cost. As such, a total 

number of 44649 SPG particles and 391040 elements (FE) are used to discretize the concrete 

specimen, which results in a total number of 447761 nodes for the discretization. The target is 

modeled by the KCC model with an associativity level of 0.5 and other material constants 

determined according to Ref. [60]. The perimeter of the specimen is set to be free. The penalty-

based node-to-surface contact algorithm is employed to model the contact interaction between 

the projectile and the concrete specimen. The coefficient of friction between the projectile and 

the concrete is 0.10. A normalized nodal support size of 1.4 is utilized for the meshfree 

approximation and displacement smoothing. The adaptive anisotropic Lagrangian kernel is 

updated constantly every 30 explicit time steps. 
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Fig. 8. Model for perforation response analysis: (a) dimension, (b) schematic discretization. 

 

Fig. 9 compares the numerical and the experimental projectile velocity histories. Very nice 

agreement is observed between the two results. Fig. 9 also reveals that a relatively constant 

deceleration is obtained in both the numerical and the experimental results, which is a typical 

phenomenon in high velocity impact penetration / perforation tests. It is seen from the 

penetration depth – projectile velocity response in Fig. 9 (b) that the projectile moves at a 

relatively constant velocity after the penetration depth beyond 400 mm, which is the thickness of 

the target. This further verifies the perforation behavior of this test. Fig. 10 shows the energy 

profile obtained from the numerical analysis. The energy is normalized to the original total 

energy. The loss in the total energy is limited, therefore, the energy is preserved. 

 

 

Fig. 9. Perforation responses: (a) projectile velocity time history, (b) history of projectile velocity 

vs penetration depth. 

(a) (b)

(a)

Thickness of target

(b)
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Fig. 10. Perforation responses: energy profile 
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Fig. 11. Perforation responses: crack propagation. 

Fig. 11 depicts the top view of radial crack initiation and propagation during the perforation 

process. The legend is the damage variable defined in Eq. (52) and this applies to all the other 

fringe plots in this paper. The fringe levels are defined in Fig. 11 (g) and this applies to all the 

other fringe plots in this paper as well. Fig. 11 shows that compressive damage reaches the edge 

of SPG zone at about 0.14 ms, and then circumferential damage bands far away from the impact 

zone were formed at about 0.24 ms due to reflected rarefaction tensile wave from the free outer 

surface. No significant evolution was found on the circumferential damage bands until 

termination of the analysis at 1.36 ms. The first micro radial crack was initiated at about 0.90 ms. 

A second micro radial crack was formed at about 1.06 ms, and the third and fourth micro radial 

cracks were initiated at about 1.16 ms. The micro radial cracks are finally developed into macro 

cracks at 1.36 ms, when the simulation was terminated while the projectile was observed to have 

perforated the target. The pattern of the radial crack propagation is consistent with many 

experimental observations [65].  

 

Fig. 12 demonstrates the evolution of the plug cone where the section view at the central 

plane of the concrete specimen is plotted. The damage plug is another typical phenomenon 

observed in the perforation tests [66]. Fig. 12 shows that damage occurs immediately at 0.02 ms 

once the projectile – target contact is constructed, and then damage is initiated far away from the 

impact zone at 0.18 ms, which is due to the reflected rarefaction tensile wave while concrete has 

a very low tensile strength. The damage evolves from both sides (due to tension and compression 

respectively) and meets at 0.38 ms and forms the prototype of the plug cone. Meanwhile, ejecta 

and debris are first observed at this time, and they are observed more and more until termination 

of the analysis at 1.36 ms. As the projectile further penetrates through the specimen, the plug 

cone expands a little bit and reaches its final shape at about 0.88 ms. Meanwhile, the damage 

zone is expanded farther to the side of the projectile. The expanded damage zone further 

develops as the projectile tip penetrates through the concrete at 1.00 ms. The damage zone then 

further develops until termination at 1.36 ms while a stable residual velocity has reached. 

However, no other macro crack is formed. Fig. 12 also verifies that the damage in the high 

velocity impact penetration processes is very localized. 
 

(g) Legend
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Fig. 12. Perforation responses: plug cone evolution. 
 

To study the convergence performance of the proposed algorithm, a refined model is used for 

the simulation. In the refined model, transition elements (see Fig. 13(b)) are used to save 

computational cost. As a result, a total of 109181 SPG nodes and 62400 FE elements are used to 

discretize the target. Noticing the fact that damage and failure occurred very localized in this 

type of problem, the refinement is only applied to the region near the projectile tip, so that there 

are 17 nodes (see Fig. 13(d)) covered by the projectile, whereas in the coarse discretization, the 

number of covered nodes is 9 (see Fig. 13(c)). The discretization of the projectile is not changed. 

It should be pointed out that an even coarser discretization is not recommended since otherwise 

too few nodes will be covered by the projectile and thus the contact interaction will not be well 

captured. Fig. 14 shows the comparison of velocity histories obtained with coarse and fine 

discretizations and the experimental data. Very nice agreement is observed. The overall 

responses are also consistent with the results reported by Rabczuk and Belytschko [67] using an 

adaptive SPH scheme. Meanwhile, less oscillation is observed for the fine discretization, which 

seems to match even better with test data then the coarse discretization one. It should also be 

pointed out that in another study we found that bigger size of the meshfree zone dose not 

significantly change the numerical responses, therefore, the results are not included in this paper. 
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Fig. 13. Perforation responses: refined discretization  

 

(a) Uniform coarse mesh (b) Transition fine mesh

(c) Coarse discretization (d) Fine discretization
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Fig. 14. Perforation responses with refined discretization: (a) projectile velocity time history, (b) 

history of projectile velocity vs penetration depth. 

 

5.2. Penetration Analysis 

 
In the penetration test, the specimen has a diameter of 1400 mm and length of 800 mm. The 

projectile was fired at a velocity of 623 m/sec towards the center of the specimen. The geometry 

and discretization of the model is shown in Fig. 15. Similar to the perforation test, only a small 

region of the concrete target right under the projectile is discretized by the present method and 

the rest of area is modeled by finite element method. In detail, 88209 SPG particles and 782080 

elements (FE) are employed to discretize the target, which contains a total number of 884601 

nodes. All the other numerical setups including material parameters in this test are the same as 

those for the perforation analysis.  

 

  

Fig. 15. Model for penetration analysis: (a) dimension, (b) schematic discretization. 

(a) (b)

(a) (b)
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Fig. 16 shows the projectile velocity and penetration depth histories in comparison with the 

experimental data. As shown in Fig. 16, the numerical results match the experimental results 

very nicely within the reliable region of test data. A relatively constant deceleration is obtained 

in both the numerical and the experimental results. The zero residual velocity in the numerical 

analysis indicates that the response is penetration, i.e., the projectile stops in the specimen. In 

fact, it penetrates into the target about 498 mm and then stopped. The normalized energy is 

shown Fig. 17. It is observed that the loss of total energy is very small and therefore, the energy 
conservation is satisfied.  

 

 

Fig. 16. Response of penetration: (a) projectile velocity time history, (b) history of projectile 

velocity vs penetration depth. 
 

 
Fig. 17. Penetration responses: energy profile 

 

Not reliable beyond due to 
ejecta and fragmentation

(a)

Penetration depth in test

(b)
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Fig. 18. Radial damage evolution in penetration response. 
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Fig. 19. Longitudinal damage evolution in penetration response. 

 

Fig. 18 demonstrates the damage evolution in the cross – section view (on the impact face). It 

can be observed that damage spread out to the edge of meshfree zone at about 0.14 ms. 

Circumferential damage bands were noticed at around 0.24 ms, which is due to the reflected 

rarefaction tensile wave from the free outer surface. These damage bands were never developed 

enough to form macroscopic cracks until the end of simulation at 3.68 ms while the projectile 

has fully stopped. Radial damage bands were generated at about 0.38 ms. The radial damage 

bands seemed to have no significant development until 2.50 ms, and then a little evolution in the 

length at 3.50 ms. At the end of simulation at 3.68 ms, two long damage bands were observed. 

They are still called the damage bands because the damage level in these bands are not high 
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enough to form macroscopic cracks. This is due to the fact that the specimen is strong enough to 

absorb all the impact energy without macroscopic fracturing. 

The longitudinal damage evolution is depicted in Fig. 19 for the penetration process on the 

section view through the central plane of the structure. Damage starts to accumulate right away 

when the projectile – target contact is initiated at 0.02 ms. Tensile damage is observed from the 

opposite face of the impact at around 0.40 ms. This is due to the reflection of the compressive 

impact wave from the free bottom surface, which forms a high pressure tensile wave. 

Meanwhile, ejecta and debris start to be observed at this time as well. More ejecta and debris are 

formed as the penetration process goes further until termination of the analysis at 3.68 ms when 

the projectile comes to a complete stop. It is also seen that the damage profile along the impact 

path away from the projectile tip (i.e., bottom portion of the target) is almost finalized at 0.92 ms 

since there is not much difference between solutions in this region for the rest of time until 

termination. This is because nearly 90% kinetic energy of the projectile has been absorbed by the 

concrete by 0.92 ms (c.f. Fig. 16). In comparison to the result in perforation test, there is no clear 

plug cone in this penetration response. 

 

6. Conclusions 
 

The numerical challenges in modeling the penetration and fragmentation of concretes consist 

in dealing with high levels of deformation and material failure involving in the complex material 

flow due to severe shock and impact loads. In this study, we have proposed an improved 

meshfree methodology for the prediction of fundamental structure response and projectile 

characteristics in the three-dimensional concrete impact and penetration problems. The present 

method focuses on the generalization of our previous development in two-dimensional large 

deformation analysis [34] to three-dimensional formulation. Additionally, in order to extend the 

three-dimensional large deformation formulation to the model of the material failure in concrete 

impact and penetration problems, a regularized concrete damage model is implemented together 

with an introduction of bond-based failure criterion and self-contact algorithm in the 

formulation. 

The computational advantages offered by the present stabilized meshfree Galerkin method 

are very appealing. The numerical results in this study suggest that the present method is capable 

of delivering a stable solution that emulates the essential concrete response and projectile 

characteristics. In particular, the scabbing and perforation of concrete under high velocity impact 

are captured in the simulation. The present method also offers a great potential for solving 

modern impact and penetration problems when an immersed technique [68] are built-in for the 

formulation and the reinforced concretes are considered in the simulation. Further developments 

regarding such simulation will be discussed and presented in the near future. 
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